Description: Lemma for 3cubes . (Contributed by Igor Ieskov, 22-Jan-2024)
Ref | Expression | ||
---|---|---|---|
Hypothesis | 3cubeslem1.a | |
|
Assertion | 3cubeslem1 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3cubeslem1.a | |
|
2 | qre | |
|
3 | 1 2 | syl | |
4 | 0red | |
|
5 | 3 4 | lttri4d | |
6 | simpl | |
|
7 | 0red | |
|
8 | peano2re | |
|
9 | 8 | adantr | |
10 | 9 | resqcld | |
11 | simpr | |
|
12 | 9 | sqge0d | |
13 | 6 7 10 11 12 | ltletrd | |
14 | 13 | a1i | |
15 | 3 14 | mpand | |
16 | 0lt1 | |
|
17 | 16 | a1i | |
18 | id | |
|
19 | sq1 | |
|
20 | 19 | a1i | |
21 | 17 18 20 | 3brtr4d | |
22 | 0cnd | |
|
23 | 1cnd | |
|
24 | 18 | oveq1d | |
25 | 22 23 24 | comraddd | |
26 | 1p0e1 | |
|
27 | 25 26 | eqtrdi | |
28 | 27 | oveq1d | |
29 | 21 28 | breqtrrd | |
30 | 29 | a1i | |
31 | ax-1rid | |
|
32 | 31 | adantr | |
33 | simpl | |
|
34 | 1red | |
|
35 | 33 34 | readdcld | |
36 | simpr | |
|
37 | 0red | |
|
38 | ltle | |
|
39 | 37 33 38 | syl2anc | |
40 | 33 | ltp1d | |
41 | 39 40 | jctird | |
42 | 36 41 | mpd | |
43 | 34 35 | jca | |
44 | 0le1 | |
|
45 | 44 | a1i | |
46 | 1e0p1 | |
|
47 | 37 33 34 36 | ltadd1dd | |
48 | 46 47 | eqbrtrid | |
49 | 43 45 48 | jca32 | |
50 | ltmul12a | |
|
51 | 33 35 42 49 50 | syl1111anc | |
52 | 32 51 | eqbrtrrd | |
53 | 35 | recnd | |
54 | 53 | sqvald | |
55 | 52 54 | breqtrrd | |
56 | 55 | a1i | |
57 | 3 56 | mpand | |
58 | 15 30 57 | 3jaod | |
59 | 5 58 | mpd | |
60 | 3 8 | syl | |
61 | 60 | resqcld | |
62 | 3 61 | posdifd | |
63 | 59 62 | mpbid | |