Metamath Proof Explorer


Theorem 3cubeslem1

Description: Lemma for 3cubes . (Contributed by Igor Ieskov, 22-Jan-2024)

Ref Expression
Hypothesis 3cubeslem1.a φA
Assertion 3cubeslem1 φ0<A+12A

Proof

Step Hyp Ref Expression
1 3cubeslem1.a φA
2 qre AA
3 1 2 syl φA
4 0red φ0
5 3 4 lttri4d φA<0A=00<A
6 simpl AA<0A
7 0red AA<00
8 peano2re AA+1
9 8 adantr AA<0A+1
10 9 resqcld AA<0A+12
11 simpr AA<0A<0
12 9 sqge0d AA<00A+12
13 6 7 10 11 12 ltletrd AA<0A<A+12
14 13 a1i φAA<0A<A+12
15 3 14 mpand φA<0A<A+12
16 0lt1 0<1
17 16 a1i A=00<1
18 id A=0A=0
19 sq1 12=1
20 19 a1i A=012=1
21 17 18 20 3brtr4d A=0A<12
22 0cnd A=00
23 1cnd A=01
24 18 oveq1d A=0A+1=0+1
25 22 23 24 comraddd A=0A+1=1+0
26 1p0e1 1+0=1
27 25 26 eqtrdi A=0A+1=1
28 27 oveq1d A=0A+12=12
29 21 28 breqtrrd A=0A<A+12
30 29 a1i φA=0A<A+12
31 ax-1rid AA1=A
32 31 adantr A0<AA1=A
33 simpl A0<AA
34 1red A0<A1
35 33 34 readdcld A0<AA+1
36 simpr A0<A0<A
37 0red A0<A0
38 ltle 0A0<A0A
39 37 33 38 syl2anc A0<A0<A0A
40 33 ltp1d A0<AA<A+1
41 39 40 jctird A0<A0<A0AA<A+1
42 36 41 mpd A0<A0AA<A+1
43 34 35 jca A0<A1A+1
44 0le1 01
45 44 a1i A0<A01
46 1e0p1 1=0+1
47 37 33 34 36 ltadd1dd A0<A0+1<A+1
48 46 47 eqbrtrid A0<A1<A+1
49 43 45 48 jca32 A0<A1A+1011<A+1
50 ltmul12a AA+10AA<A+11A+1011<A+1A1<A+1A+1
51 33 35 42 49 50 syl1111anc A0<AA1<A+1A+1
52 32 51 eqbrtrrd A0<AA<A+1A+1
53 35 recnd A0<AA+1
54 53 sqvald A0<AA+12=A+1A+1
55 52 54 breqtrrd A0<AA<A+12
56 55 a1i φA0<AA<A+12
57 3 56 mpand φ0<AA<A+12
58 15 30 57 3jaod φA<0A=00<AA<A+12
59 5 58 mpd φA<A+12
60 3 8 syl φA+1
61 60 resqcld φA+12
62 3 61 posdifd φA<A+120<A+12A
63 59 62 mpbid φ0<A+12A