Database
BASIC REAL AND COMPLEX FUNCTIONS
Polynomials
Liouville's approximation theorem
aalioulem5
Next ⟩
aalioulem6
Metamath Proof Explorer
Ascii
Unicode
Theorem
aalioulem5
Description:
Lemma for
aaliou
.
(Contributed by
Stefan O'Rear
, 16-Nov-2014)
Ref
Expression
Hypotheses
aalioulem2.a
⊢
N
=
deg
F
aalioulem2.b
⊢
φ
→
F
∈
Poly
ℤ
aalioulem2.c
⊢
φ
→
N
∈
ℕ
aalioulem2.d
⊢
φ
→
A
∈
ℝ
aalioulem3.e
⊢
φ
→
F
A
=
0
Assertion
aalioulem5
⊢
φ
→
∃
x
∈
ℝ
+
∀
p
∈
ℤ
∀
q
∈
ℕ
F
p
q
≠
0
→
A
=
p
q
∨
x
q
N
≤
A
−
p
q
Proof
Step
Hyp
Ref
Expression
1
aalioulem2.a
⊢
N
=
deg
F
2
aalioulem2.b
⊢
φ
→
F
∈
Poly
ℤ
3
aalioulem2.c
⊢
φ
→
N
∈
ℕ
4
aalioulem2.d
⊢
φ
→
A
∈
ℝ
5
aalioulem3.e
⊢
φ
→
F
A
=
0
6
1
2
3
4
5
aalioulem4
⊢
φ
→
∃
a
∈
ℝ
+
∀
p
∈
ℤ
∀
q
∈
ℕ
F
p
q
≠
0
∧
A
−
p
q
≤
1
→
A
=
p
q
∨
a
q
N
≤
A
−
p
q
7
simpr
⊢
φ
∧
a
∈
ℝ
+
→
a
∈
ℝ
+
8
1rp
⊢
1
∈
ℝ
+
9
ifcl
⊢
a
∈
ℝ
+
∧
1
∈
ℝ
+
→
if
a
≤
1
a
1
∈
ℝ
+
10
7
8
9
sylancl
⊢
φ
∧
a
∈
ℝ
+
→
if
a
≤
1
a
1
∈
ℝ
+
11
10
adantr
⊢
φ
∧
a
∈
ℝ
+
∧
p
∈
ℤ
∧
q
∈
ℕ
→
if
a
≤
1
a
1
∈
ℝ
+
12
simprr
⊢
φ
∧
a
∈
ℝ
+
∧
p
∈
ℤ
∧
q
∈
ℕ
→
q
∈
ℕ
13
12
nnrpd
⊢
φ
∧
a
∈
ℝ
+
∧
p
∈
ℤ
∧
q
∈
ℕ
→
q
∈
ℝ
+
14
3
ad2antrr
⊢
φ
∧
a
∈
ℝ
+
∧
p
∈
ℤ
∧
q
∈
ℕ
→
N
∈
ℕ
15
14
nnzd
⊢
φ
∧
a
∈
ℝ
+
∧
p
∈
ℤ
∧
q
∈
ℕ
→
N
∈
ℤ
16
13
15
rpexpcld
⊢
φ
∧
a
∈
ℝ
+
∧
p
∈
ℤ
∧
q
∈
ℕ
→
q
N
∈
ℝ
+
17
11
16
rpdivcld
⊢
φ
∧
a
∈
ℝ
+
∧
p
∈
ℤ
∧
q
∈
ℕ
→
if
a
≤
1
a
1
q
N
∈
ℝ
+
18
17
rpred
⊢
φ
∧
a
∈
ℝ
+
∧
p
∈
ℤ
∧
q
∈
ℕ
→
if
a
≤
1
a
1
q
N
∈
ℝ
19
1re
⊢
1
∈
ℝ
20
19
a1i
⊢
φ
∧
a
∈
ℝ
+
∧
p
∈
ℤ
∧
q
∈
ℕ
→
1
∈
ℝ
21
4
ad2antrr
⊢
φ
∧
a
∈
ℝ
+
∧
p
∈
ℤ
∧
q
∈
ℕ
→
A
∈
ℝ
22
znq
⊢
p
∈
ℤ
∧
q
∈
ℕ
→
p
q
∈
ℚ
23
qre
⊢
p
q
∈
ℚ
→
p
q
∈
ℝ
24
22
23
syl
⊢
p
∈
ℤ
∧
q
∈
ℕ
→
p
q
∈
ℝ
25
24
adantl
⊢
φ
∧
a
∈
ℝ
+
∧
p
∈
ℤ
∧
q
∈
ℕ
→
p
q
∈
ℝ
26
21
25
resubcld
⊢
φ
∧
a
∈
ℝ
+
∧
p
∈
ℤ
∧
q
∈
ℕ
→
A
−
p
q
∈
ℝ
27
26
recnd
⊢
φ
∧
a
∈
ℝ
+
∧
p
∈
ℤ
∧
q
∈
ℕ
→
A
−
p
q
∈
ℂ
28
27
abscld
⊢
φ
∧
a
∈
ℝ
+
∧
p
∈
ℤ
∧
q
∈
ℕ
→
A
−
p
q
∈
ℝ
29
18
20
28
3jca
⊢
φ
∧
a
∈
ℝ
+
∧
p
∈
ℤ
∧
q
∈
ℕ
→
if
a
≤
1
a
1
q
N
∈
ℝ
∧
1
∈
ℝ
∧
A
−
p
q
∈
ℝ
30
29
adantr
⊢
φ
∧
a
∈
ℝ
+
∧
p
∈
ℤ
∧
q
∈
ℕ
∧
1
<
A
−
p
q
→
if
a
≤
1
a
1
q
N
∈
ℝ
∧
1
∈
ℝ
∧
A
−
p
q
∈
ℝ
31
16
rprecred
⊢
φ
∧
a
∈
ℝ
+
∧
p
∈
ℤ
∧
q
∈
ℕ
→
1
q
N
∈
ℝ
32
11
rpred
⊢
φ
∧
a
∈
ℝ
+
∧
p
∈
ℤ
∧
q
∈
ℕ
→
if
a
≤
1
a
1
∈
ℝ
33
simplr
⊢
φ
∧
a
∈
ℝ
+
∧
p
∈
ℤ
∧
q
∈
ℕ
→
a
∈
ℝ
+
34
33
rpred
⊢
φ
∧
a
∈
ℝ
+
∧
p
∈
ℤ
∧
q
∈
ℕ
→
a
∈
ℝ
35
min2
⊢
a
∈
ℝ
∧
1
∈
ℝ
→
if
a
≤
1
a
1
≤
1
36
34
19
35
sylancl
⊢
φ
∧
a
∈
ℝ
+
∧
p
∈
ℤ
∧
q
∈
ℕ
→
if
a
≤
1
a
1
≤
1
37
32
20
16
36
lediv1dd
⊢
φ
∧
a
∈
ℝ
+
∧
p
∈
ℤ
∧
q
∈
ℕ
→
if
a
≤
1
a
1
q
N
≤
1
q
N
38
14
nnnn0d
⊢
φ
∧
a
∈
ℝ
+
∧
p
∈
ℤ
∧
q
∈
ℕ
→
N
∈
ℕ
0
39
12
38
nnexpcld
⊢
φ
∧
a
∈
ℝ
+
∧
p
∈
ℤ
∧
q
∈
ℕ
→
q
N
∈
ℕ
40
1nn
⊢
1
∈
ℕ
41
40
a1i
⊢
φ
∧
a
∈
ℝ
+
∧
p
∈
ℤ
∧
q
∈
ℕ
→
1
∈
ℕ
42
39
41
nnmulcld
⊢
φ
∧
a
∈
ℝ
+
∧
p
∈
ℤ
∧
q
∈
ℕ
→
q
N
⋅
1
∈
ℕ
43
42
nnge1d
⊢
φ
∧
a
∈
ℝ
+
∧
p
∈
ℤ
∧
q
∈
ℕ
→
1
≤
q
N
⋅
1
44
20
20
16
ledivmuld
⊢
φ
∧
a
∈
ℝ
+
∧
p
∈
ℤ
∧
q
∈
ℕ
→
1
q
N
≤
1
↔
1
≤
q
N
⋅
1
45
43
44
mpbird
⊢
φ
∧
a
∈
ℝ
+
∧
p
∈
ℤ
∧
q
∈
ℕ
→
1
q
N
≤
1
46
18
31
20
37
45
letrd
⊢
φ
∧
a
∈
ℝ
+
∧
p
∈
ℤ
∧
q
∈
ℕ
→
if
a
≤
1
a
1
q
N
≤
1
47
46
adantr
⊢
φ
∧
a
∈
ℝ
+
∧
p
∈
ℤ
∧
q
∈
ℕ
∧
1
<
A
−
p
q
→
if
a
≤
1
a
1
q
N
≤
1
48
ltle
⊢
1
∈
ℝ
∧
A
−
p
q
∈
ℝ
→
1
<
A
−
p
q
→
1
≤
A
−
p
q
49
19
28
48
sylancr
⊢
φ
∧
a
∈
ℝ
+
∧
p
∈
ℤ
∧
q
∈
ℕ
→
1
<
A
−
p
q
→
1
≤
A
−
p
q
50
49
imp
⊢
φ
∧
a
∈
ℝ
+
∧
p
∈
ℤ
∧
q
∈
ℕ
∧
1
<
A
−
p
q
→
1
≤
A
−
p
q
51
47
50
jca
⊢
φ
∧
a
∈
ℝ
+
∧
p
∈
ℤ
∧
q
∈
ℕ
∧
1
<
A
−
p
q
→
if
a
≤
1
a
1
q
N
≤
1
∧
1
≤
A
−
p
q
52
letr
⊢
if
a
≤
1
a
1
q
N
∈
ℝ
∧
1
∈
ℝ
∧
A
−
p
q
∈
ℝ
→
if
a
≤
1
a
1
q
N
≤
1
∧
1
≤
A
−
p
q
→
if
a
≤
1
a
1
q
N
≤
A
−
p
q
53
30
51
52
sylc
⊢
φ
∧
a
∈
ℝ
+
∧
p
∈
ℤ
∧
q
∈
ℕ
∧
1
<
A
−
p
q
→
if
a
≤
1
a
1
q
N
≤
A
−
p
q
54
53
olcd
⊢
φ
∧
a
∈
ℝ
+
∧
p
∈
ℤ
∧
q
∈
ℕ
∧
1
<
A
−
p
q
→
A
=
p
q
∨
if
a
≤
1
a
1
q
N
≤
A
−
p
q
55
54
2a1d
⊢
φ
∧
a
∈
ℝ
+
∧
p
∈
ℤ
∧
q
∈
ℕ
∧
1
<
A
−
p
q
→
F
p
q
≠
0
∧
A
−
p
q
≤
1
→
A
=
p
q
∨
a
q
N
≤
A
−
p
q
→
F
p
q
≠
0
→
A
=
p
q
∨
if
a
≤
1
a
1
q
N
≤
A
−
p
q
56
pm3.21
⊢
A
−
p
q
≤
1
→
F
p
q
≠
0
→
F
p
q
≠
0
∧
A
−
p
q
≤
1
57
56
adantl
⊢
φ
∧
a
∈
ℝ
+
∧
p
∈
ℤ
∧
q
∈
ℕ
∧
A
−
p
q
≤
1
→
F
p
q
≠
0
→
F
p
q
≠
0
∧
A
−
p
q
≤
1
58
33
16
rpdivcld
⊢
φ
∧
a
∈
ℝ
+
∧
p
∈
ℤ
∧
q
∈
ℕ
→
a
q
N
∈
ℝ
+
59
58
rpred
⊢
φ
∧
a
∈
ℝ
+
∧
p
∈
ℤ
∧
q
∈
ℕ
→
a
q
N
∈
ℝ
60
18
59
28
3jca
⊢
φ
∧
a
∈
ℝ
+
∧
p
∈
ℤ
∧
q
∈
ℕ
→
if
a
≤
1
a
1
q
N
∈
ℝ
∧
a
q
N
∈
ℝ
∧
A
−
p
q
∈
ℝ
61
60
adantr
⊢
φ
∧
a
∈
ℝ
+
∧
p
∈
ℤ
∧
q
∈
ℕ
∧
a
q
N
≤
A
−
p
q
→
if
a
≤
1
a
1
q
N
∈
ℝ
∧
a
q
N
∈
ℝ
∧
A
−
p
q
∈
ℝ
62
min1
⊢
a
∈
ℝ
∧
1
∈
ℝ
→
if
a
≤
1
a
1
≤
a
63
34
19
62
sylancl
⊢
φ
∧
a
∈
ℝ
+
∧
p
∈
ℤ
∧
q
∈
ℕ
→
if
a
≤
1
a
1
≤
a
64
32
34
16
63
lediv1dd
⊢
φ
∧
a
∈
ℝ
+
∧
p
∈
ℤ
∧
q
∈
ℕ
→
if
a
≤
1
a
1
q
N
≤
a
q
N
65
64
anim1i
⊢
φ
∧
a
∈
ℝ
+
∧
p
∈
ℤ
∧
q
∈
ℕ
∧
a
q
N
≤
A
−
p
q
→
if
a
≤
1
a
1
q
N
≤
a
q
N
∧
a
q
N
≤
A
−
p
q
66
letr
⊢
if
a
≤
1
a
1
q
N
∈
ℝ
∧
a
q
N
∈
ℝ
∧
A
−
p
q
∈
ℝ
→
if
a
≤
1
a
1
q
N
≤
a
q
N
∧
a
q
N
≤
A
−
p
q
→
if
a
≤
1
a
1
q
N
≤
A
−
p
q
67
61
65
66
sylc
⊢
φ
∧
a
∈
ℝ
+
∧
p
∈
ℤ
∧
q
∈
ℕ
∧
a
q
N
≤
A
−
p
q
→
if
a
≤
1
a
1
q
N
≤
A
−
p
q
68
67
ex
⊢
φ
∧
a
∈
ℝ
+
∧
p
∈
ℤ
∧
q
∈
ℕ
→
a
q
N
≤
A
−
p
q
→
if
a
≤
1
a
1
q
N
≤
A
−
p
q
69
68
adantr
⊢
φ
∧
a
∈
ℝ
+
∧
p
∈
ℤ
∧
q
∈
ℕ
∧
A
−
p
q
≤
1
→
a
q
N
≤
A
−
p
q
→
if
a
≤
1
a
1
q
N
≤
A
−
p
q
70
69
orim2d
⊢
φ
∧
a
∈
ℝ
+
∧
p
∈
ℤ
∧
q
∈
ℕ
∧
A
−
p
q
≤
1
→
A
=
p
q
∨
a
q
N
≤
A
−
p
q
→
A
=
p
q
∨
if
a
≤
1
a
1
q
N
≤
A
−
p
q
71
57
70
imim12d
⊢
φ
∧
a
∈
ℝ
+
∧
p
∈
ℤ
∧
q
∈
ℕ
∧
A
−
p
q
≤
1
→
F
p
q
≠
0
∧
A
−
p
q
≤
1
→
A
=
p
q
∨
a
q
N
≤
A
−
p
q
→
F
p
q
≠
0
→
A
=
p
q
∨
if
a
≤
1
a
1
q
N
≤
A
−
p
q
72
55
71
20
28
ltlecasei
⊢
φ
∧
a
∈
ℝ
+
∧
p
∈
ℤ
∧
q
∈
ℕ
→
F
p
q
≠
0
∧
A
−
p
q
≤
1
→
A
=
p
q
∨
a
q
N
≤
A
−
p
q
→
F
p
q
≠
0
→
A
=
p
q
∨
if
a
≤
1
a
1
q
N
≤
A
−
p
q
73
72
ralimdvva
⊢
φ
∧
a
∈
ℝ
+
→
∀
p
∈
ℤ
∀
q
∈
ℕ
F
p
q
≠
0
∧
A
−
p
q
≤
1
→
A
=
p
q
∨
a
q
N
≤
A
−
p
q
→
∀
p
∈
ℤ
∀
q
∈
ℕ
F
p
q
≠
0
→
A
=
p
q
∨
if
a
≤
1
a
1
q
N
≤
A
−
p
q
74
oveq1
⊢
x
=
if
a
≤
1
a
1
→
x
q
N
=
if
a
≤
1
a
1
q
N
75
74
breq1d
⊢
x
=
if
a
≤
1
a
1
→
x
q
N
≤
A
−
p
q
↔
if
a
≤
1
a
1
q
N
≤
A
−
p
q
76
75
orbi2d
⊢
x
=
if
a
≤
1
a
1
→
A
=
p
q
∨
x
q
N
≤
A
−
p
q
↔
A
=
p
q
∨
if
a
≤
1
a
1
q
N
≤
A
−
p
q
77
76
imbi2d
⊢
x
=
if
a
≤
1
a
1
→
F
p
q
≠
0
→
A
=
p
q
∨
x
q
N
≤
A
−
p
q
↔
F
p
q
≠
0
→
A
=
p
q
∨
if
a
≤
1
a
1
q
N
≤
A
−
p
q
78
77
2ralbidv
⊢
x
=
if
a
≤
1
a
1
→
∀
p
∈
ℤ
∀
q
∈
ℕ
F
p
q
≠
0
→
A
=
p
q
∨
x
q
N
≤
A
−
p
q
↔
∀
p
∈
ℤ
∀
q
∈
ℕ
F
p
q
≠
0
→
A
=
p
q
∨
if
a
≤
1
a
1
q
N
≤
A
−
p
q
79
78
rspcev
⊢
if
a
≤
1
a
1
∈
ℝ
+
∧
∀
p
∈
ℤ
∀
q
∈
ℕ
F
p
q
≠
0
→
A
=
p
q
∨
if
a
≤
1
a
1
q
N
≤
A
−
p
q
→
∃
x
∈
ℝ
+
∀
p
∈
ℤ
∀
q
∈
ℕ
F
p
q
≠
0
→
A
=
p
q
∨
x
q
N
≤
A
−
p
q
80
10
73
79
syl6an
⊢
φ
∧
a
∈
ℝ
+
→
∀
p
∈
ℤ
∀
q
∈
ℕ
F
p
q
≠
0
∧
A
−
p
q
≤
1
→
A
=
p
q
∨
a
q
N
≤
A
−
p
q
→
∃
x
∈
ℝ
+
∀
p
∈
ℤ
∀
q
∈
ℕ
F
p
q
≠
0
→
A
=
p
q
∨
x
q
N
≤
A
−
p
q
81
80
rexlimdva
⊢
φ
→
∃
a
∈
ℝ
+
∀
p
∈
ℤ
∀
q
∈
ℕ
F
p
q
≠
0
∧
A
−
p
q
≤
1
→
A
=
p
q
∨
a
q
N
≤
A
−
p
q
→
∃
x
∈
ℝ
+
∀
p
∈
ℤ
∀
q
∈
ℕ
F
p
q
≠
0
→
A
=
p
q
∨
x
q
N
≤
A
−
p
q
82
6
81
mpd
⊢
φ
→
∃
x
∈
ℝ
+
∀
p
∈
ℤ
∀
q
∈
ℕ
F
p
q
≠
0
→
A
=
p
q
∨
x
q
N
≤
A
−
p
q