Metamath Proof Explorer


Theorem aalioulem5

Description: Lemma for aaliou . (Contributed by Stefan O'Rear, 16-Nov-2014)

Ref Expression
Hypotheses aalioulem2.a N=degF
aalioulem2.b φFPoly
aalioulem2.c φN
aalioulem2.d φA
aalioulem3.e φFA=0
Assertion aalioulem5 φx+pqFpq0A=pqxqNApq

Proof

Step Hyp Ref Expression
1 aalioulem2.a N=degF
2 aalioulem2.b φFPoly
3 aalioulem2.c φN
4 aalioulem2.d φA
5 aalioulem3.e φFA=0
6 1 2 3 4 5 aalioulem4 φa+pqFpq0Apq1A=pqaqNApq
7 simpr φa+a+
8 1rp 1+
9 ifcl a+1+ifa1a1+
10 7 8 9 sylancl φa+ifa1a1+
11 10 adantr φa+pqifa1a1+
12 simprr φa+pqq
13 12 nnrpd φa+pqq+
14 3 ad2antrr φa+pqN
15 14 nnzd φa+pqN
16 13 15 rpexpcld φa+pqqN+
17 11 16 rpdivcld φa+pqifa1a1qN+
18 17 rpred φa+pqifa1a1qN
19 1re 1
20 19 a1i φa+pq1
21 4 ad2antrr φa+pqA
22 znq pqpq
23 qre pqpq
24 22 23 syl pqpq
25 24 adantl φa+pqpq
26 21 25 resubcld φa+pqApq
27 26 recnd φa+pqApq
28 27 abscld φa+pqApq
29 18 20 28 3jca φa+pqifa1a1qN1Apq
30 29 adantr φa+pq1<Apqifa1a1qN1Apq
31 16 rprecred φa+pq1qN
32 11 rpred φa+pqifa1a1
33 simplr φa+pqa+
34 33 rpred φa+pqa
35 min2 a1ifa1a11
36 34 19 35 sylancl φa+pqifa1a11
37 32 20 16 36 lediv1dd φa+pqifa1a1qN1qN
38 14 nnnn0d φa+pqN0
39 12 38 nnexpcld φa+pqqN
40 1nn 1
41 40 a1i φa+pq1
42 39 41 nnmulcld φa+pqqN1
43 42 nnge1d φa+pq1qN1
44 20 20 16 ledivmuld φa+pq1qN11qN1
45 43 44 mpbird φa+pq1qN1
46 18 31 20 37 45 letrd φa+pqifa1a1qN1
47 46 adantr φa+pq1<Apqifa1a1qN1
48 ltle 1Apq1<Apq1Apq
49 19 28 48 sylancr φa+pq1<Apq1Apq
50 49 imp φa+pq1<Apq1Apq
51 47 50 jca φa+pq1<Apqifa1a1qN11Apq
52 letr ifa1a1qN1Apqifa1a1qN11Apqifa1a1qNApq
53 30 51 52 sylc φa+pq1<Apqifa1a1qNApq
54 53 olcd φa+pq1<ApqA=pqifa1a1qNApq
55 54 2a1d φa+pq1<ApqFpq0Apq1A=pqaqNApqFpq0A=pqifa1a1qNApq
56 pm3.21 Apq1Fpq0Fpq0Apq1
57 56 adantl φa+pqApq1Fpq0Fpq0Apq1
58 33 16 rpdivcld φa+pqaqN+
59 58 rpred φa+pqaqN
60 18 59 28 3jca φa+pqifa1a1qNaqNApq
61 60 adantr φa+pqaqNApqifa1a1qNaqNApq
62 min1 a1ifa1a1a
63 34 19 62 sylancl φa+pqifa1a1a
64 32 34 16 63 lediv1dd φa+pqifa1a1qNaqN
65 64 anim1i φa+pqaqNApqifa1a1qNaqNaqNApq
66 letr ifa1a1qNaqNApqifa1a1qNaqNaqNApqifa1a1qNApq
67 61 65 66 sylc φa+pqaqNApqifa1a1qNApq
68 67 ex φa+pqaqNApqifa1a1qNApq
69 68 adantr φa+pqApq1aqNApqifa1a1qNApq
70 69 orim2d φa+pqApq1A=pqaqNApqA=pqifa1a1qNApq
71 57 70 imim12d φa+pqApq1Fpq0Apq1A=pqaqNApqFpq0A=pqifa1a1qNApq
72 55 71 20 28 ltlecasei φa+pqFpq0Apq1A=pqaqNApqFpq0A=pqifa1a1qNApq
73 72 ralimdvva φa+pqFpq0Apq1A=pqaqNApqpqFpq0A=pqifa1a1qNApq
74 oveq1 x=ifa1a1xqN=ifa1a1qN
75 74 breq1d x=ifa1a1xqNApqifa1a1qNApq
76 75 orbi2d x=ifa1a1A=pqxqNApqA=pqifa1a1qNApq
77 76 imbi2d x=ifa1a1Fpq0A=pqxqNApqFpq0A=pqifa1a1qNApq
78 77 2ralbidv x=ifa1a1pqFpq0A=pqxqNApqpqFpq0A=pqifa1a1qNApq
79 78 rspcev ifa1a1+pqFpq0A=pqifa1a1qNApqx+pqFpq0A=pqxqNApq
80 10 73 79 syl6an φa+pqFpq0Apq1A=pqaqNApqx+pqFpq0A=pqxqNApq
81 80 rexlimdva φa+pqFpq0Apq1A=pqaqNApqx+pqFpq0A=pqxqNApq
82 6 81 mpd φx+pqFpq0A=pqxqNApq