| Step | Hyp | Ref | Expression | 
						
							| 1 |  | aalioulem2.a |  | 
						
							| 2 |  | aalioulem2.b |  | 
						
							| 3 |  | aalioulem2.c |  | 
						
							| 4 |  | aalioulem2.d |  | 
						
							| 5 |  | aalioulem3.e |  | 
						
							| 6 | 1 2 3 4 5 | aalioulem4 |  | 
						
							| 7 |  | simpr |  | 
						
							| 8 |  | 1rp |  | 
						
							| 9 |  | ifcl |  | 
						
							| 10 | 7 8 9 | sylancl |  | 
						
							| 11 | 10 | adantr |  | 
						
							| 12 |  | simprr |  | 
						
							| 13 | 12 | nnrpd |  | 
						
							| 14 | 3 | ad2antrr |  | 
						
							| 15 | 14 | nnzd |  | 
						
							| 16 | 13 15 | rpexpcld |  | 
						
							| 17 | 11 16 | rpdivcld |  | 
						
							| 18 | 17 | rpred |  | 
						
							| 19 |  | 1re |  | 
						
							| 20 | 19 | a1i |  | 
						
							| 21 | 4 | ad2antrr |  | 
						
							| 22 |  | znq |  | 
						
							| 23 |  | qre |  | 
						
							| 24 | 22 23 | syl |  | 
						
							| 25 | 24 | adantl |  | 
						
							| 26 | 21 25 | resubcld |  | 
						
							| 27 | 26 | recnd |  | 
						
							| 28 | 27 | abscld |  | 
						
							| 29 | 18 20 28 | 3jca |  | 
						
							| 30 | 29 | adantr |  | 
						
							| 31 | 16 | rprecred |  | 
						
							| 32 | 11 | rpred |  | 
						
							| 33 |  | simplr |  | 
						
							| 34 | 33 | rpred |  | 
						
							| 35 |  | min2 |  | 
						
							| 36 | 34 19 35 | sylancl |  | 
						
							| 37 | 32 20 16 36 | lediv1dd |  | 
						
							| 38 | 14 | nnnn0d |  | 
						
							| 39 | 12 38 | nnexpcld |  | 
						
							| 40 |  | 1nn |  | 
						
							| 41 | 40 | a1i |  | 
						
							| 42 | 39 41 | nnmulcld |  | 
						
							| 43 | 42 | nnge1d |  | 
						
							| 44 | 20 20 16 | ledivmuld |  | 
						
							| 45 | 43 44 | mpbird |  | 
						
							| 46 | 18 31 20 37 45 | letrd |  | 
						
							| 47 | 46 | adantr |  | 
						
							| 48 |  | ltle |  | 
						
							| 49 | 19 28 48 | sylancr |  | 
						
							| 50 | 49 | imp |  | 
						
							| 51 | 47 50 | jca |  | 
						
							| 52 |  | letr |  | 
						
							| 53 | 30 51 52 | sylc |  | 
						
							| 54 | 53 | olcd |  | 
						
							| 55 | 54 | 2a1d |  | 
						
							| 56 |  | pm3.21 |  | 
						
							| 57 | 56 | adantl |  | 
						
							| 58 | 33 16 | rpdivcld |  | 
						
							| 59 | 58 | rpred |  | 
						
							| 60 | 18 59 28 | 3jca |  | 
						
							| 61 | 60 | adantr |  | 
						
							| 62 |  | min1 |  | 
						
							| 63 | 34 19 62 | sylancl |  | 
						
							| 64 | 32 34 16 63 | lediv1dd |  | 
						
							| 65 | 64 | anim1i |  | 
						
							| 66 |  | letr |  | 
						
							| 67 | 61 65 66 | sylc |  | 
						
							| 68 | 67 | ex |  | 
						
							| 69 | 68 | adantr |  | 
						
							| 70 | 69 | orim2d |  | 
						
							| 71 | 57 70 | imim12d |  | 
						
							| 72 | 55 71 20 28 | ltlecasei |  | 
						
							| 73 | 72 | ralimdvva |  | 
						
							| 74 |  | oveq1 |  | 
						
							| 75 | 74 | breq1d |  | 
						
							| 76 | 75 | orbi2d |  | 
						
							| 77 | 76 | imbi2d |  | 
						
							| 78 | 77 | 2ralbidv |  | 
						
							| 79 | 78 | rspcev |  | 
						
							| 80 | 10 73 79 | syl6an |  | 
						
							| 81 | 80 | rexlimdva |  | 
						
							| 82 | 6 81 | mpd |  |