Description: A version of ac6 which takes the choice as a hypothesis. (Contributed by Mario Carneiro, 27-Aug-2015)
Ref | Expression | ||
---|---|---|---|
Hypothesis | ac6num.1 | |
|
Assertion | ac6num | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ac6num.1 | |
|
2 | nfiu1 | |
|
3 | 2 | nfel1 | |
4 | ssiun2 | |
|
5 | ssexg | |
|
6 | 5 | expcom | |
7 | 4 6 | syl5 | |
8 | 3 7 | ralrimi | |
9 | dfiun2g | |
|
10 | 8 9 | syl | |
11 | eqid | |
|
12 | 11 | rnmpt | |
13 | 12 | unieqi | |
14 | 10 13 | eqtr4di | |
15 | id | |
|
16 | 14 15 | eqeltrrd | |
17 | 16 | 3ad2ant2 | |
18 | simp3 | |
|
19 | necom | |
|
20 | rabn0 | |
|
21 | df-ne | |
|
22 | 19 20 21 | 3bitr3i | |
23 | 22 | ralbii | |
24 | ralnex | |
|
25 | 23 24 | bitri | |
26 | 18 25 | sylib | |
27 | 0ex | |
|
28 | 11 | elrnmpt | |
29 | 27 28 | ax-mp | |
30 | 26 29 | sylnibr | |
31 | ac5num | |
|
32 | 17 30 31 | syl2anc | |
33 | ffn | |
|
34 | 33 | anim1i | |
35 | 8 | 3ad2ant2 | |
36 | fveq2 | |
|
37 | id | |
|
38 | 36 37 | eleq12d | |
39 | 11 38 | ralrnmptw | |
40 | 35 39 | syl | |
41 | 40 | anbi2d | |
42 | 34 41 | imbitrid | |
43 | simpl1 | |
|
44 | 43 | mptexd | |
45 | elrabi | |
|
46 | 45 | ralimi | |
47 | 46 | ad2antll | |
48 | eqid | |
|
49 | 48 | fmpt | |
50 | 47 49 | sylib | |
51 | nfcv | |
|
52 | 51 | elrabsf | |
53 | 52 | simprbi | |
54 | 53 | ralimi | |
55 | 54 | ad2antll | |
56 | 50 55 | jca | |
57 | feq1 | |
|
58 | nfmpt1 | |
|
59 | 58 | nfeq2 | |
60 | fvex | |
|
61 | 60 1 | sbcie | |
62 | fveq1 | |
|
63 | fvex | |
|
64 | 48 | fvmpt2 | |
65 | 63 64 | mpan2 | |
66 | 62 65 | sylan9eq | |
67 | 66 | sbceq1d | |
68 | 61 67 | bitr3id | |
69 | 59 68 | ralbida | |
70 | 57 69 | anbi12d | |
71 | 44 56 70 | spcedv | |
72 | 71 | ex | |
73 | 42 72 | syld | |
74 | 73 | exlimdv | |
75 | 32 74 | mpd | |