Metamath Proof Explorer


Theorem ac6num

Description: A version of ac6 which takes the choice as a hypothesis. (Contributed by Mario Carneiro, 27-Aug-2015)

Ref Expression
Hypothesis ac6num.1 y=fxφψ
Assertion ac6num AVxAyB|φdomcardxAyBφff:ABxAψ

Proof

Step Hyp Ref Expression
1 ac6num.1 y=fxφψ
2 nfiu1 _xxAyB|φ
3 2 nfel1 xxAyB|φdomcard
4 ssiun2 xAyB|φxAyB|φ
5 ssexg yB|φxAyB|φxAyB|φdomcardyB|φV
6 5 expcom xAyB|φdomcardyB|φxAyB|φyB|φV
7 4 6 syl5 xAyB|φdomcardxAyB|φV
8 3 7 ralrimi xAyB|φdomcardxAyB|φV
9 dfiun2g xAyB|φVxAyB|φ=z|xAz=yB|φ
10 8 9 syl xAyB|φdomcardxAyB|φ=z|xAz=yB|φ
11 eqid xAyB|φ=xAyB|φ
12 11 rnmpt ranxAyB|φ=z|xAz=yB|φ
13 12 unieqi ranxAyB|φ=z|xAz=yB|φ
14 10 13 eqtr4di xAyB|φdomcardxAyB|φ=ranxAyB|φ
15 id xAyB|φdomcardxAyB|φdomcard
16 14 15 eqeltrrd xAyB|φdomcardranxAyB|φdomcard
17 16 3ad2ant2 AVxAyB|φdomcardxAyBφranxAyB|φdomcard
18 simp3 AVxAyB|φdomcardxAyBφxAyBφ
19 necom yB|φyB|φ
20 rabn0 yB|φyBφ
21 df-ne yB|φ¬=yB|φ
22 19 20 21 3bitr3i yBφ¬=yB|φ
23 22 ralbii xAyBφxA¬=yB|φ
24 ralnex xA¬=yB|φ¬xA=yB|φ
25 23 24 bitri xAyBφ¬xA=yB|φ
26 18 25 sylib AVxAyB|φdomcardxAyBφ¬xA=yB|φ
27 0ex V
28 11 elrnmpt VranxAyB|φxA=yB|φ
29 27 28 ax-mp ranxAyB|φxA=yB|φ
30 26 29 sylnibr AVxAyB|φdomcardxAyBφ¬ranxAyB|φ
31 ac5num ranxAyB|φdomcard¬ranxAyB|φgg:ranxAyB|φranxAyB|φzranxAyB|φgzz
32 17 30 31 syl2anc AVxAyB|φdomcardxAyBφgg:ranxAyB|φranxAyB|φzranxAyB|φgzz
33 ffn g:ranxAyB|φranxAyB|φgFnranxAyB|φ
34 33 anim1i g:ranxAyB|φranxAyB|φzranxAyB|φgzzgFnranxAyB|φzranxAyB|φgzz
35 8 3ad2ant2 AVxAyB|φdomcardxAyBφxAyB|φV
36 fveq2 z=yB|φgz=gyB|φ
37 id z=yB|φz=yB|φ
38 36 37 eleq12d z=yB|φgzzgyB|φyB|φ
39 11 38 ralrnmptw xAyB|φVzranxAyB|φgzzxAgyB|φyB|φ
40 35 39 syl AVxAyB|φdomcardxAyBφzranxAyB|φgzzxAgyB|φyB|φ
41 40 anbi2d AVxAyB|φdomcardxAyBφgFnranxAyB|φzranxAyB|φgzzgFnranxAyB|φxAgyB|φyB|φ
42 34 41 imbitrid AVxAyB|φdomcardxAyBφg:ranxAyB|φranxAyB|φzranxAyB|φgzzgFnranxAyB|φxAgyB|φyB|φ
43 simpl1 AVxAyB|φdomcardxAyBφgFnranxAyB|φxAgyB|φyB|φAV
44 43 mptexd AVxAyB|φdomcardxAyBφgFnranxAyB|φxAgyB|φyB|φxAgyB|φV
45 elrabi gyB|φyB|φgyB|φB
46 45 ralimi xAgyB|φyB|φxAgyB|φB
47 46 ad2antll AVxAyB|φdomcardxAyBφgFnranxAyB|φxAgyB|φyB|φxAgyB|φB
48 eqid xAgyB|φ=xAgyB|φ
49 48 fmpt xAgyB|φBxAgyB|φ:AB
50 47 49 sylib AVxAyB|φdomcardxAyBφgFnranxAyB|φxAgyB|φyB|φxAgyB|φ:AB
51 nfcv _yB
52 51 elrabsf gyB|φyB|φgyB|φB[˙gyB|φ/y]˙φ
53 52 simprbi gyB|φyB|φ[˙gyB|φ/y]˙φ
54 53 ralimi xAgyB|φyB|φxA[˙gyB|φ/y]˙φ
55 54 ad2antll AVxAyB|φdomcardxAyBφgFnranxAyB|φxAgyB|φyB|φxA[˙gyB|φ/y]˙φ
56 50 55 jca AVxAyB|φdomcardxAyBφgFnranxAyB|φxAgyB|φyB|φxAgyB|φ:ABxA[˙gyB|φ/y]˙φ
57 feq1 f=xAgyB|φf:ABxAgyB|φ:AB
58 nfmpt1 _xxAgyB|φ
59 58 nfeq2 xf=xAgyB|φ
60 fvex fxV
61 60 1 sbcie [˙fx/y]˙φψ
62 fveq1 f=xAgyB|φfx=xAgyB|φx
63 fvex gyB|φV
64 48 fvmpt2 xAgyB|φVxAgyB|φx=gyB|φ
65 63 64 mpan2 xAxAgyB|φx=gyB|φ
66 62 65 sylan9eq f=xAgyB|φxAfx=gyB|φ
67 66 sbceq1d f=xAgyB|φxA[˙fx/y]˙φ[˙gyB|φ/y]˙φ
68 61 67 bitr3id f=xAgyB|φxAψ[˙gyB|φ/y]˙φ
69 59 68 ralbida f=xAgyB|φxAψxA[˙gyB|φ/y]˙φ
70 57 69 anbi12d f=xAgyB|φf:ABxAψxAgyB|φ:ABxA[˙gyB|φ/y]˙φ
71 44 56 70 spcedv AVxAyB|φdomcardxAyBφgFnranxAyB|φxAgyB|φyB|φff:ABxAψ
72 71 ex AVxAyB|φdomcardxAyBφgFnranxAyB|φxAgyB|φyB|φff:ABxAψ
73 42 72 syld AVxAyB|φdomcardxAyBφg:ranxAyB|φranxAyB|φzranxAyB|φgzzff:ABxAψ
74 73 exlimdv AVxAyB|φdomcardxAyBφgg:ranxAyB|φranxAyB|φzranxAyB|φgzzff:ABxAψ
75 32 74 mpd AVxAyB|φdomcardxAyBφff:ABxAψ