| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ackbij.f |  | 
						
							| 2 |  | ackbij.g |  | 
						
							| 3 |  | fveq2 |  | 
						
							| 4 |  | suceq |  | 
						
							| 5 | 4 | fveq2d |  | 
						
							| 6 |  | fveq2 |  | 
						
							| 7 | 5 6 | reseq12d |  | 
						
							| 8 | 3 7 | eqeq12d |  | 
						
							| 9 |  | fveq2 |  | 
						
							| 10 |  | suceq |  | 
						
							| 11 | 10 | fveq2d |  | 
						
							| 12 |  | fveq2 |  | 
						
							| 13 | 11 12 | reseq12d |  | 
						
							| 14 | 9 13 | eqeq12d |  | 
						
							| 15 |  | fveq2 |  | 
						
							| 16 |  | suceq |  | 
						
							| 17 | 16 | fveq2d |  | 
						
							| 18 |  | fveq2 |  | 
						
							| 19 | 17 18 | reseq12d |  | 
						
							| 20 | 15 19 | eqeq12d |  | 
						
							| 21 |  | fveq2 |  | 
						
							| 22 |  | suceq |  | 
						
							| 23 | 22 | fveq2d |  | 
						
							| 24 |  | fveq2 |  | 
						
							| 25 | 23 24 | reseq12d |  | 
						
							| 26 | 21 25 | eqeq12d |  | 
						
							| 27 |  | res0 |  | 
						
							| 28 |  | r10 |  | 
						
							| 29 | 28 | reseq2i |  | 
						
							| 30 |  | 0ex |  | 
						
							| 31 | 30 | rdg0 |  | 
						
							| 32 | 27 29 31 | 3eqtr4ri |  | 
						
							| 33 |  | peano2 |  | 
						
							| 34 | 1 2 | ackbij2lem2 |  | 
						
							| 35 | 33 34 | syl |  | 
						
							| 36 |  | f1ofn |  | 
						
							| 37 | 35 36 | syl |  | 
						
							| 38 | 37 | adantr |  | 
						
							| 39 |  | peano2 |  | 
						
							| 40 | 1 2 | ackbij2lem2 |  | 
						
							| 41 |  | f1ofn |  | 
						
							| 42 | 33 39 40 41 | 4syl |  | 
						
							| 43 |  | nnon |  | 
						
							| 44 | 33 43 | syl |  | 
						
							| 45 |  | r1sssuc |  | 
						
							| 46 | 44 45 | syl |  | 
						
							| 47 |  | fnssres |  | 
						
							| 48 | 42 46 47 | syl2anc |  | 
						
							| 49 | 48 | adantr |  | 
						
							| 50 |  | nnon |  | 
						
							| 51 |  | r1suc |  | 
						
							| 52 | 50 51 | syl |  | 
						
							| 53 | 52 | eleq2d |  | 
						
							| 54 | 53 | biimpa |  | 
						
							| 55 | 54 | elpwid |  | 
						
							| 56 |  | resima2 |  | 
						
							| 57 | 55 56 | syl |  | 
						
							| 58 | 57 | fveq2d |  | 
						
							| 59 |  | fvex |  | 
						
							| 60 | 59 | resex |  | 
						
							| 61 |  | dmeq |  | 
						
							| 62 | 61 | pweqd |  | 
						
							| 63 |  | imaeq1 |  | 
						
							| 64 | 63 | fveq2d |  | 
						
							| 65 | 62 64 | mpteq12dv |  | 
						
							| 66 | 60 | dmex |  | 
						
							| 67 | 66 | pwex |  | 
						
							| 68 | 67 | mptex |  | 
						
							| 69 | 65 2 68 | fvmpt |  | 
						
							| 70 | 60 69 | ax-mp |  | 
						
							| 71 | 70 | fveq1i |  | 
						
							| 72 |  | r1sssuc |  | 
						
							| 73 | 50 72 | syl |  | 
						
							| 74 |  | fnssres |  | 
						
							| 75 | 37 73 74 | syl2anc |  | 
						
							| 76 | 75 | fndmd |  | 
						
							| 77 | 76 | pweqd |  | 
						
							| 78 | 77 | adantr |  | 
						
							| 79 | 54 78 | eleqtrrd |  | 
						
							| 80 |  | imaeq2 |  | 
						
							| 81 | 80 | fveq2d |  | 
						
							| 82 |  | eqid |  | 
						
							| 83 |  | fvex |  | 
						
							| 84 | 81 82 83 | fvmpt |  | 
						
							| 85 | 79 84 | syl |  | 
						
							| 86 | 71 85 | eqtrid |  | 
						
							| 87 |  | dmeq |  | 
						
							| 88 | 87 | pweqd |  | 
						
							| 89 |  | imaeq1 |  | 
						
							| 90 | 89 | fveq2d |  | 
						
							| 91 | 88 90 | mpteq12dv |  | 
						
							| 92 | 59 | dmex |  | 
						
							| 93 | 92 | pwex |  | 
						
							| 94 | 93 | mptex |  | 
						
							| 95 | 91 2 94 | fvmpt |  | 
						
							| 96 | 59 95 | ax-mp |  | 
						
							| 97 | 96 | fveq1i |  | 
						
							| 98 |  | r1tr |  | 
						
							| 99 | 98 | a1i |  | 
						
							| 100 |  | dftr4 |  | 
						
							| 101 | 99 100 | sylib |  | 
						
							| 102 | 101 | sselda |  | 
						
							| 103 |  | f1odm |  | 
						
							| 104 | 35 103 | syl |  | 
						
							| 105 | 104 | pweqd |  | 
						
							| 106 | 105 | adantr |  | 
						
							| 107 | 102 106 | eleqtrrd |  | 
						
							| 108 |  | imaeq2 |  | 
						
							| 109 | 108 | fveq2d |  | 
						
							| 110 |  | eqid |  | 
						
							| 111 |  | fvex |  | 
						
							| 112 | 109 110 111 | fvmpt |  | 
						
							| 113 | 107 112 | syl |  | 
						
							| 114 | 97 113 | eqtrid |  | 
						
							| 115 | 58 86 114 | 3eqtr4d |  | 
						
							| 116 | 115 | adantlr |  | 
						
							| 117 |  | fveq2 |  | 
						
							| 118 | 117 | fveq1d |  | 
						
							| 119 | 118 | ad2antlr |  | 
						
							| 120 |  | rdgsuc |  | 
						
							| 121 | 44 120 | syl |  | 
						
							| 122 | 121 | fveq1d |  | 
						
							| 123 | 122 | ad2antrr |  | 
						
							| 124 | 116 119 123 | 3eqtr4rd |  | 
						
							| 125 |  | fvres |  | 
						
							| 126 | 125 | adantl |  | 
						
							| 127 |  | rdgsuc |  | 
						
							| 128 | 50 127 | syl |  | 
						
							| 129 | 128 | fveq1d |  | 
						
							| 130 | 129 | ad2antrr |  | 
						
							| 131 | 124 126 130 | 3eqtr4rd |  | 
						
							| 132 | 38 49 131 | eqfnfvd |  | 
						
							| 133 | 132 | ex |  | 
						
							| 134 | 8 14 20 26 32 133 | finds |  | 
						
							| 135 |  | resss |  | 
						
							| 136 | 134 135 | eqsstrdi |  |