| Step |
Hyp |
Ref |
Expression |
| 1 |
|
addsproplem.1 |
|
| 2 |
|
addsproplem2.2 |
|
| 3 |
|
addsproplem2.3 |
|
| 4 |
|
fvex |
|
| 5 |
4
|
abrexex |
|
| 6 |
5
|
a1i |
|
| 7 |
|
fvex |
|
| 8 |
7
|
abrexex |
|
| 9 |
8
|
a1i |
|
| 10 |
6 9
|
unexd |
|
| 11 |
|
fvex |
|
| 12 |
11
|
abrexex |
|
| 13 |
12
|
a1i |
|
| 14 |
|
fvex |
|
| 15 |
14
|
abrexex |
|
| 16 |
15
|
a1i |
|
| 17 |
13 16
|
unexd |
|
| 18 |
1
|
adantr |
|
| 19 |
|
leftssno |
|
| 20 |
19
|
sseli |
|
| 21 |
20
|
adantl |
|
| 22 |
3
|
adantr |
|
| 23 |
|
0sno |
|
| 24 |
23
|
a1i |
|
| 25 |
|
bday0s |
|
| 26 |
25
|
oveq2i |
|
| 27 |
|
bdayelon |
|
| 28 |
|
naddrid |
|
| 29 |
27 28
|
ax-mp |
|
| 30 |
26 29
|
eqtri |
|
| 31 |
30
|
uneq2i |
|
| 32 |
|
bdayelon |
|
| 33 |
|
naddword1 |
|
| 34 |
27 32 33
|
mp2an |
|
| 35 |
|
ssequn2 |
|
| 36 |
34 35
|
mpbi |
|
| 37 |
31 36
|
eqtri |
|
| 38 |
|
leftssold |
|
| 39 |
38
|
sseli |
|
| 40 |
|
bdayelon |
|
| 41 |
|
oldbday |
|
| 42 |
40 20 41
|
sylancr |
|
| 43 |
39 42
|
mpbid |
|
| 44 |
|
naddel1 |
|
| 45 |
27 40 32 44
|
mp3an |
|
| 46 |
43 45
|
sylib |
|
| 47 |
46
|
adantl |
|
| 48 |
|
elun1 |
|
| 49 |
47 48
|
syl |
|
| 50 |
37 49
|
eqeltrid |
|
| 51 |
18 21 22 24 50
|
addsproplem1 |
|
| 52 |
51
|
simpld |
|
| 53 |
|
eleq1a |
|
| 54 |
52 53
|
syl |
|
| 55 |
54
|
rexlimdva |
|
| 56 |
55
|
abssdv |
|
| 57 |
1
|
adantr |
|
| 58 |
2
|
adantr |
|
| 59 |
|
leftssno |
|
| 60 |
59
|
sseli |
|
| 61 |
60
|
adantl |
|
| 62 |
23
|
a1i |
|
| 63 |
25
|
oveq2i |
|
| 64 |
|
naddrid |
|
| 65 |
40 64
|
ax-mp |
|
| 66 |
63 65
|
eqtri |
|
| 67 |
66
|
uneq2i |
|
| 68 |
|
bdayelon |
|
| 69 |
|
naddword1 |
|
| 70 |
40 68 69
|
mp2an |
|
| 71 |
|
ssequn2 |
|
| 72 |
70 71
|
mpbi |
|
| 73 |
67 72
|
eqtri |
|
| 74 |
|
leftssold |
|
| 75 |
74
|
sseli |
|
| 76 |
|
oldbday |
|
| 77 |
32 60 76
|
sylancr |
|
| 78 |
75 77
|
mpbid |
|
| 79 |
|
naddel2 |
|
| 80 |
68 32 40 79
|
mp3an |
|
| 81 |
78 80
|
sylib |
|
| 82 |
81
|
adantl |
|
| 83 |
|
elun1 |
|
| 84 |
82 83
|
syl |
|
| 85 |
73 84
|
eqeltrid |
|
| 86 |
57 58 61 62 85
|
addsproplem1 |
|
| 87 |
86
|
simpld |
|
| 88 |
|
eleq1a |
|
| 89 |
87 88
|
syl |
|
| 90 |
89
|
rexlimdva |
|
| 91 |
90
|
abssdv |
|
| 92 |
56 91
|
unssd |
|
| 93 |
1
|
adantr |
|
| 94 |
|
rightssno |
|
| 95 |
94
|
sseli |
|
| 96 |
95
|
adantl |
|
| 97 |
3
|
adantr |
|
| 98 |
23
|
a1i |
|
| 99 |
25
|
oveq2i |
|
| 100 |
|
bdayelon |
|
| 101 |
|
naddrid |
|
| 102 |
100 101
|
ax-mp |
|
| 103 |
99 102
|
eqtri |
|
| 104 |
103
|
uneq2i |
|
| 105 |
|
naddword1 |
|
| 106 |
100 32 105
|
mp2an |
|
| 107 |
|
ssequn2 |
|
| 108 |
106 107
|
mpbi |
|
| 109 |
104 108
|
eqtri |
|
| 110 |
|
rightssold |
|
| 111 |
110
|
sseli |
|
| 112 |
|
oldbday |
|
| 113 |
40 95 112
|
sylancr |
|
| 114 |
111 113
|
mpbid |
|
| 115 |
|
naddel1 |
|
| 116 |
100 40 32 115
|
mp3an |
|
| 117 |
114 116
|
sylib |
|
| 118 |
117
|
adantl |
|
| 119 |
|
elun1 |
|
| 120 |
118 119
|
syl |
|
| 121 |
109 120
|
eqeltrid |
|
| 122 |
93 96 97 98 121
|
addsproplem1 |
|
| 123 |
122
|
simpld |
|
| 124 |
|
eleq1a |
|
| 125 |
123 124
|
syl |
|
| 126 |
125
|
rexlimdva |
|
| 127 |
126
|
abssdv |
|
| 128 |
1
|
adantr |
|
| 129 |
2
|
adantr |
|
| 130 |
|
rightssno |
|
| 131 |
130
|
sseli |
|
| 132 |
131
|
adantl |
|
| 133 |
23
|
a1i |
|
| 134 |
66
|
uneq2i |
|
| 135 |
|
bdayelon |
|
| 136 |
|
naddword1 |
|
| 137 |
40 135 136
|
mp2an |
|
| 138 |
|
ssequn2 |
|
| 139 |
137 138
|
mpbi |
|
| 140 |
134 139
|
eqtri |
|
| 141 |
|
rightssold |
|
| 142 |
141
|
sseli |
|
| 143 |
|
oldbday |
|
| 144 |
32 131 143
|
sylancr |
|
| 145 |
142 144
|
mpbid |
|
| 146 |
|
naddel2 |
|
| 147 |
135 32 40 146
|
mp3an |
|
| 148 |
145 147
|
sylib |
|
| 149 |
148
|
adantl |
|
| 150 |
|
elun1 |
|
| 151 |
149 150
|
syl |
|
| 152 |
140 151
|
eqeltrid |
|
| 153 |
128 129 132 133 152
|
addsproplem1 |
|
| 154 |
153
|
simpld |
|
| 155 |
|
eleq1a |
|
| 156 |
154 155
|
syl |
|
| 157 |
156
|
rexlimdva |
|
| 158 |
157
|
abssdv |
|
| 159 |
127 158
|
unssd |
|
| 160 |
|
elun |
|
| 161 |
|
vex |
|
| 162 |
|
eqeq1 |
|
| 163 |
162
|
rexbidv |
|
| 164 |
161 163
|
elab |
|
| 165 |
|
eqeq1 |
|
| 166 |
165
|
rexbidv |
|
| 167 |
161 166
|
elab |
|
| 168 |
164 167
|
orbi12i |
|
| 169 |
160 168
|
bitri |
|
| 170 |
|
elun |
|
| 171 |
|
vex |
|
| 172 |
|
eqeq1 |
|
| 173 |
172
|
rexbidv |
|
| 174 |
171 173
|
elab |
|
| 175 |
|
eqeq1 |
|
| 176 |
175
|
rexbidv |
|
| 177 |
171 176
|
elab |
|
| 178 |
174 177
|
orbi12i |
|
| 179 |
170 178
|
bitri |
|
| 180 |
169 179
|
anbi12i |
|
| 181 |
|
anddi |
|
| 182 |
180 181
|
bitri |
|
| 183 |
|
reeanv |
|
| 184 |
|
lltropt |
|
| 185 |
184
|
a1i |
|
| 186 |
|
simprl |
|
| 187 |
|
simprr |
|
| 188 |
185 186 187
|
ssltsepcd |
|
| 189 |
1
|
adantr |
|
| 190 |
3
|
adantr |
|
| 191 |
20
|
ad2antrl |
|
| 192 |
95
|
ad2antll |
|
| 193 |
|
naddcom |
|
| 194 |
32 27 193
|
mp2an |
|
| 195 |
46
|
ad2antrl |
|
| 196 |
194 195
|
eqeltrid |
|
| 197 |
|
naddcom |
|
| 198 |
32 100 197
|
mp2an |
|
| 199 |
117
|
ad2antll |
|
| 200 |
198 199
|
eqeltrid |
|
| 201 |
|
naddcl |
|
| 202 |
32 27 201
|
mp2an |
|
| 203 |
|
naddcl |
|
| 204 |
32 100 203
|
mp2an |
|
| 205 |
|
naddcl |
|
| 206 |
40 32 205
|
mp2an |
|
| 207 |
|
onunel |
|
| 208 |
202 204 206 207
|
mp3an |
|
| 209 |
196 200 208
|
sylanbrc |
|
| 210 |
|
elun1 |
|
| 211 |
209 210
|
syl |
|
| 212 |
189 190 191 192 211
|
addsproplem1 |
|
| 213 |
212
|
simprd |
|
| 214 |
188 213
|
mpd |
|
| 215 |
|
breq12 |
|
| 216 |
214 215
|
syl5ibrcom |
|
| 217 |
216
|
rexlimdvva |
|
| 218 |
183 217
|
biimtrrid |
|
| 219 |
|
reeanv |
|
| 220 |
52
|
adantrr |
|
| 221 |
1
|
adantr |
|
| 222 |
20
|
ad2antrl |
|
| 223 |
131
|
ad2antll |
|
| 224 |
23
|
a1i |
|
| 225 |
30
|
uneq2i |
|
| 226 |
|
naddword1 |
|
| 227 |
27 135 226
|
mp2an |
|
| 228 |
|
ssequn2 |
|
| 229 |
227 228
|
mpbi |
|
| 230 |
225 229
|
eqtri |
|
| 231 |
|
naddel1 |
|
| 232 |
27 40 135 231
|
mp3an |
|
| 233 |
43 232
|
sylib |
|
| 234 |
233
|
ad2antrl |
|
| 235 |
148
|
ad2antll |
|
| 236 |
|
ontr1 |
|
| 237 |
206 236
|
ax-mp |
|
| 238 |
234 235 237
|
syl2anc |
|
| 239 |
|
elun1 |
|
| 240 |
238 239
|
syl |
|
| 241 |
230 240
|
eqeltrid |
|
| 242 |
221 222 223 224 241
|
addsproplem1 |
|
| 243 |
242
|
simpld |
|
| 244 |
154
|
adantrl |
|
| 245 |
|
rightval |
|
| 246 |
245
|
reqabi |
|
| 247 |
246
|
simprbi |
|
| 248 |
247
|
ad2antll |
|
| 249 |
3
|
adantr |
|
| 250 |
46
|
ad2antrl |
|
| 251 |
|
naddcl |
|
| 252 |
27 32 251
|
mp2an |
|
| 253 |
|
naddcl |
|
| 254 |
27 135 253
|
mp2an |
|
| 255 |
|
onunel |
|
| 256 |
252 254 206 255
|
mp3an |
|
| 257 |
250 238 256
|
sylanbrc |
|
| 258 |
|
elun1 |
|
| 259 |
257 258
|
syl |
|
| 260 |
221 222 249 223 259
|
addsproplem1 |
|
| 261 |
260
|
simprd |
|
| 262 |
248 261
|
mpd |
|
| 263 |
222 249
|
addscomd |
|
| 264 |
222 223
|
addscomd |
|
| 265 |
262 263 264
|
3brtr4d |
|
| 266 |
|
leftval |
|
| 267 |
266
|
reqabi |
|
| 268 |
267
|
simprbi |
|
| 269 |
268
|
ad2antrl |
|
| 270 |
2
|
adantr |
|
| 271 |
|
naddcom |
|
| 272 |
135 27 271
|
mp2an |
|
| 273 |
272 238
|
eqeltrid |
|
| 274 |
|
naddcom |
|
| 275 |
135 40 274
|
mp2an |
|
| 276 |
275 235
|
eqeltrid |
|
| 277 |
|
naddcl |
|
| 278 |
135 27 277
|
mp2an |
|
| 279 |
|
naddcl |
|
| 280 |
135 40 279
|
mp2an |
|
| 281 |
|
onunel |
|
| 282 |
278 280 206 281
|
mp3an |
|
| 283 |
273 276 282
|
sylanbrc |
|
| 284 |
|
elun1 |
|
| 285 |
283 284
|
syl |
|
| 286 |
221 223 222 270 285
|
addsproplem1 |
|
| 287 |
286
|
simprd |
|
| 288 |
269 287
|
mpd |
|
| 289 |
220 243 244 265 288
|
slttrd |
|
| 290 |
|
breq12 |
|
| 291 |
289 290
|
syl5ibrcom |
|
| 292 |
291
|
rexlimdvva |
|
| 293 |
219 292
|
biimtrrid |
|
| 294 |
218 293
|
jaod |
|
| 295 |
|
reeanv |
|
| 296 |
1
|
adantr |
|
| 297 |
2
|
adantr |
|
| 298 |
60
|
ad2antrl |
|
| 299 |
23
|
a1i |
|
| 300 |
81
|
ad2antrl |
|
| 301 |
300 83
|
syl |
|
| 302 |
73 301
|
eqeltrid |
|
| 303 |
296 297 298 299 302
|
addsproplem1 |
|
| 304 |
303
|
simpld |
|
| 305 |
95
|
ad2antll |
|
| 306 |
103
|
uneq2i |
|
| 307 |
|
naddword1 |
|
| 308 |
100 68 307
|
mp2an |
|
| 309 |
|
ssequn2 |
|
| 310 |
308 309
|
mpbi |
|
| 311 |
306 310
|
eqtri |
|
| 312 |
|
naddel1 |
|
| 313 |
100 40 68 312
|
mp3an |
|
| 314 |
114 313
|
sylib |
|
| 315 |
314
|
ad2antll |
|
| 316 |
|
ontr1 |
|
| 317 |
206 316
|
ax-mp |
|
| 318 |
315 300 317
|
syl2anc |
|
| 319 |
|
elun1 |
|
| 320 |
318 319
|
syl |
|
| 321 |
311 320
|
eqeltrid |
|
| 322 |
296 305 298 299 321
|
addsproplem1 |
|
| 323 |
322
|
simpld |
|
| 324 |
3
|
adantr |
|
| 325 |
117
|
ad2antll |
|
| 326 |
325 119
|
syl |
|
| 327 |
109 326
|
eqeltrid |
|
| 328 |
296 305 324 299 327
|
addsproplem1 |
|
| 329 |
328
|
simpld |
|
| 330 |
|
rightval |
|
| 331 |
330
|
eleq2i |
|
| 332 |
331
|
biimpi |
|
| 333 |
332
|
ad2antll |
|
| 334 |
|
rabid |
|
| 335 |
333 334
|
sylib |
|
| 336 |
335
|
simprd |
|
| 337 |
|
naddcom |
|
| 338 |
68 40 337
|
mp2an |
|
| 339 |
338 300
|
eqeltrid |
|
| 340 |
|
naddcom |
|
| 341 |
68 100 340
|
mp2an |
|
| 342 |
341 318
|
eqeltrid |
|
| 343 |
|
naddcl |
|
| 344 |
68 40 343
|
mp2an |
|
| 345 |
|
naddcl |
|
| 346 |
68 100 345
|
mp2an |
|
| 347 |
|
onunel |
|
| 348 |
344 346 206 347
|
mp3an |
|
| 349 |
339 342 348
|
sylanbrc |
|
| 350 |
|
elun1 |
|
| 351 |
349 350
|
syl |
|
| 352 |
296 298 297 305 351
|
addsproplem1 |
|
| 353 |
352
|
simprd |
|
| 354 |
336 353
|
mpd |
|
| 355 |
|
leftval |
|
| 356 |
355
|
eleq2i |
|
| 357 |
356
|
biimpi |
|
| 358 |
357
|
ad2antrl |
|
| 359 |
|
rabid |
|
| 360 |
358 359
|
sylib |
|
| 361 |
360
|
simprd |
|
| 362 |
|
naddcl |
|
| 363 |
100 68 362
|
mp2an |
|
| 364 |
|
naddcl |
|
| 365 |
100 32 364
|
mp2an |
|
| 366 |
|
onunel |
|
| 367 |
363 365 206 366
|
mp3an |
|
| 368 |
318 325 367
|
sylanbrc |
|
| 369 |
|
elun1 |
|
| 370 |
368 369
|
syl |
|
| 371 |
296 305 298 324 370
|
addsproplem1 |
|
| 372 |
371
|
simprd |
|
| 373 |
361 372
|
mpd |
|
| 374 |
305 298
|
addscomd |
|
| 375 |
305 324
|
addscomd |
|
| 376 |
373 374 375
|
3brtr4d |
|
| 377 |
304 323 329 354 376
|
slttrd |
|
| 378 |
|
breq12 |
|
| 379 |
377 378
|
syl5ibrcom |
|
| 380 |
379
|
rexlimdvva |
|
| 381 |
295 380
|
biimtrrid |
|
| 382 |
|
reeanv |
|
| 383 |
|
lltropt |
|
| 384 |
383
|
a1i |
|
| 385 |
|
simprl |
|
| 386 |
|
simprr |
|
| 387 |
384 385 386
|
ssltsepcd |
|
| 388 |
1
|
adantr |
|
| 389 |
2
|
adantr |
|
| 390 |
60
|
ad2antrl |
|
| 391 |
131
|
ad2antll |
|
| 392 |
81
|
ad2antrl |
|
| 393 |
148
|
ad2antll |
|
| 394 |
|
naddcl |
|
| 395 |
40 68 394
|
mp2an |
|
| 396 |
|
naddcl |
|
| 397 |
40 135 396
|
mp2an |
|
| 398 |
|
onunel |
|
| 399 |
395 397 206 398
|
mp3an |
|
| 400 |
392 393 399
|
sylanbrc |
|
| 401 |
|
elun1 |
|
| 402 |
400 401
|
syl |
|
| 403 |
388 389 390 391 402
|
addsproplem1 |
|
| 404 |
403
|
simprd |
|
| 405 |
387 404
|
mpd |
|
| 406 |
389 390
|
addscomd |
|
| 407 |
389 391
|
addscomd |
|
| 408 |
405 406 407
|
3brtr4d |
|
| 409 |
|
breq12 |
|
| 410 |
408 409
|
syl5ibrcom |
|
| 411 |
410
|
rexlimdvva |
|
| 412 |
382 411
|
biimtrrid |
|
| 413 |
381 412
|
jaod |
|
| 414 |
294 413
|
jaod |
|
| 415 |
182 414
|
biimtrid |
|
| 416 |
415
|
3impib |
|
| 417 |
10 17 92 159 416
|
ssltd |
|