Metamath Proof Explorer


Theorem addsproplem2

Description: Lemma for surreal addition properties. When proving closure for operations defined using norec and norec2 , it is a strictly stronger statement to say that the cut defined is actually a cut than it is to say that the operation is closed. We will often prove this stronger statement. Here, we do so for the cut involved in surreal addition. (Contributed by Scott Fenton, 21-Jan-2025)

Ref Expression
Hypotheses addsproplem.1 φ x No y No z No bday x + bday y bday x + bday z bday X + bday Y bday X + bday Z x + s y No y < s z y + s x < s z + s x
addsproplem2.2 φ X No
addsproplem2.3 φ Y No
Assertion addsproplem2 φ p | l L X p = l + s Y q | m L Y q = X + s m s w | r R X w = r + s Y t | s R Y t = X + s s

Proof

Step Hyp Ref Expression
1 addsproplem.1 φ x No y No z No bday x + bday y bday x + bday z bday X + bday Y bday X + bday Z x + s y No y < s z y + s x < s z + s x
2 addsproplem2.2 φ X No
3 addsproplem2.3 φ Y No
4 fvex L X V
5 4 abrexex p | l L X p = l + s Y V
6 5 a1i φ p | l L X p = l + s Y V
7 fvex L Y V
8 7 abrexex q | m L Y q = X + s m V
9 8 a1i φ q | m L Y q = X + s m V
10 6 9 unexd φ p | l L X p = l + s Y q | m L Y q = X + s m V
11 fvex R X V
12 11 abrexex w | r R X w = r + s Y V
13 12 a1i φ w | r R X w = r + s Y V
14 fvex R Y V
15 14 abrexex t | s R Y t = X + s s V
16 15 a1i φ t | s R Y t = X + s s V
17 13 16 unexd φ w | r R X w = r + s Y t | s R Y t = X + s s V
18 1 adantr φ l L X x No y No z No bday x + bday y bday x + bday z bday X + bday Y bday X + bday Z x + s y No y < s z y + s x < s z + s x
19 leftssno L X No
20 19 sseli l L X l No
21 20 adantl φ l L X l No
22 3 adantr φ l L X Y No
23 0sno 0 s No
24 23 a1i φ l L X 0 s No
25 bday0s bday 0 s =
26 25 oveq2i bday l + bday 0 s = bday l +
27 bdayelon bday l On
28 naddrid bday l On bday l + = bday l
29 27 28 ax-mp bday l + = bday l
30 26 29 eqtri bday l + bday 0 s = bday l
31 30 uneq2i bday l + bday Y bday l + bday 0 s = bday l + bday Y bday l
32 bdayelon bday Y On
33 naddword1 bday l On bday Y On bday l bday l + bday Y
34 27 32 33 mp2an bday l bday l + bday Y
35 ssequn2 bday l bday l + bday Y bday l + bday Y bday l = bday l + bday Y
36 34 35 mpbi bday l + bday Y bday l = bday l + bday Y
37 31 36 eqtri bday l + bday Y bday l + bday 0 s = bday l + bday Y
38 leftssold L X Old bday X
39 38 sseli l L X l Old bday X
40 bdayelon bday X On
41 oldbday bday X On l No l Old bday X bday l bday X
42 40 20 41 sylancr l L X l Old bday X bday l bday X
43 39 42 mpbid l L X bday l bday X
44 naddel1 bday l On bday X On bday Y On bday l bday X bday l + bday Y bday X + bday Y
45 27 40 32 44 mp3an bday l bday X bday l + bday Y bday X + bday Y
46 43 45 sylib l L X bday l + bday Y bday X + bday Y
47 46 adantl φ l L X bday l + bday Y bday X + bday Y
48 elun1 bday l + bday Y bday X + bday Y bday l + bday Y bday X + bday Y bday X + bday Z
49 47 48 syl φ l L X bday l + bday Y bday X + bday Y bday X + bday Z
50 37 49 eqeltrid φ l L X bday l + bday Y bday l + bday 0 s bday X + bday Y bday X + bday Z
51 18 21 22 24 50 addsproplem1 φ l L X l + s Y No Y < s 0 s Y + s l < s 0 s + s l
52 51 simpld φ l L X l + s Y No
53 eleq1a l + s Y No p = l + s Y p No
54 52 53 syl φ l L X p = l + s Y p No
55 54 rexlimdva φ l L X p = l + s Y p No
56 55 abssdv φ p | l L X p = l + s Y No
57 1 adantr φ m L Y x No y No z No bday x + bday y bday x + bday z bday X + bday Y bday X + bday Z x + s y No y < s z y + s x < s z + s x
58 2 adantr φ m L Y X No
59 leftssno L Y No
60 59 sseli m L Y m No
61 60 adantl φ m L Y m No
62 23 a1i φ m L Y 0 s No
63 25 oveq2i bday X + bday 0 s = bday X +
64 naddrid bday X On bday X + = bday X
65 40 64 ax-mp bday X + = bday X
66 63 65 eqtri bday X + bday 0 s = bday X
67 66 uneq2i bday X + bday m bday X + bday 0 s = bday X + bday m bday X
68 bdayelon bday m On
69 naddword1 bday X On bday m On bday X bday X + bday m
70 40 68 69 mp2an bday X bday X + bday m
71 ssequn2 bday X bday X + bday m bday X + bday m bday X = bday X + bday m
72 70 71 mpbi bday X + bday m bday X = bday X + bday m
73 67 72 eqtri bday X + bday m bday X + bday 0 s = bday X + bday m
74 leftssold L Y Old bday Y
75 74 sseli m L Y m Old bday Y
76 oldbday bday Y On m No m Old bday Y bday m bday Y
77 32 60 76 sylancr m L Y m Old bday Y bday m bday Y
78 75 77 mpbid m L Y bday m bday Y
79 naddel2 bday m On bday Y On bday X On bday m bday Y bday X + bday m bday X + bday Y
80 68 32 40 79 mp3an bday m bday Y bday X + bday m bday X + bday Y
81 78 80 sylib m L Y bday X + bday m bday X + bday Y
82 81 adantl φ m L Y bday X + bday m bday X + bday Y
83 elun1 bday X + bday m bday X + bday Y bday X + bday m bday X + bday Y bday X + bday Z
84 82 83 syl φ m L Y bday X + bday m bday X + bday Y bday X + bday Z
85 73 84 eqeltrid φ m L Y bday X + bday m bday X + bday 0 s bday X + bday Y bday X + bday Z
86 57 58 61 62 85 addsproplem1 φ m L Y X + s m No m < s 0 s m + s X < s 0 s + s X
87 86 simpld φ m L Y X + s m No
88 eleq1a X + s m No q = X + s m q No
89 87 88 syl φ m L Y q = X + s m q No
90 89 rexlimdva φ m L Y q = X + s m q No
91 90 abssdv φ q | m L Y q = X + s m No
92 56 91 unssd φ p | l L X p = l + s Y q | m L Y q = X + s m No
93 1 adantr φ r R X x No y No z No bday x + bday y bday x + bday z bday X + bday Y bday X + bday Z x + s y No y < s z y + s x < s z + s x
94 rightssno R X No
95 94 sseli r R X r No
96 95 adantl φ r R X r No
97 3 adantr φ r R X Y No
98 23 a1i φ r R X 0 s No
99 25 oveq2i bday r + bday 0 s = bday r +
100 bdayelon bday r On
101 naddrid bday r On bday r + = bday r
102 100 101 ax-mp bday r + = bday r
103 99 102 eqtri bday r + bday 0 s = bday r
104 103 uneq2i bday r + bday Y bday r + bday 0 s = bday r + bday Y bday r
105 naddword1 bday r On bday Y On bday r bday r + bday Y
106 100 32 105 mp2an bday r bday r + bday Y
107 ssequn2 bday r bday r + bday Y bday r + bday Y bday r = bday r + bday Y
108 106 107 mpbi bday r + bday Y bday r = bday r + bday Y
109 104 108 eqtri bday r + bday Y bday r + bday 0 s = bday r + bday Y
110 rightssold R X Old bday X
111 110 sseli r R X r Old bday X
112 oldbday bday X On r No r Old bday X bday r bday X
113 40 95 112 sylancr r R X r Old bday X bday r bday X
114 111 113 mpbid r R X bday r bday X
115 naddel1 bday r On bday X On bday Y On bday r bday X bday r + bday Y bday X + bday Y
116 100 40 32 115 mp3an bday r bday X bday r + bday Y bday X + bday Y
117 114 116 sylib r R X bday r + bday Y bday X + bday Y
118 117 adantl φ r R X bday r + bday Y bday X + bday Y
119 elun1 bday r + bday Y bday X + bday Y bday r + bday Y bday X + bday Y bday X + bday Z
120 118 119 syl φ r R X bday r + bday Y bday X + bday Y bday X + bday Z
121 109 120 eqeltrid φ r R X bday r + bday Y bday r + bday 0 s bday X + bday Y bday X + bday Z
122 93 96 97 98 121 addsproplem1 φ r R X r + s Y No Y < s 0 s Y + s r < s 0 s + s r
123 122 simpld φ r R X r + s Y No
124 eleq1a r + s Y No w = r + s Y w No
125 123 124 syl φ r R X w = r + s Y w No
126 125 rexlimdva φ r R X w = r + s Y w No
127 126 abssdv φ w | r R X w = r + s Y No
128 1 adantr φ s R Y x No y No z No bday x + bday y bday x + bday z bday X + bday Y bday X + bday Z x + s y No y < s z y + s x < s z + s x
129 2 adantr φ s R Y X No
130 rightssno R Y No
131 130 sseli s R Y s No
132 131 adantl φ s R Y s No
133 23 a1i φ s R Y 0 s No
134 66 uneq2i bday X + bday s bday X + bday 0 s = bday X + bday s bday X
135 bdayelon bday s On
136 naddword1 bday X On bday s On bday X bday X + bday s
137 40 135 136 mp2an bday X bday X + bday s
138 ssequn2 bday X bday X + bday s bday X + bday s bday X = bday X + bday s
139 137 138 mpbi bday X + bday s bday X = bday X + bday s
140 134 139 eqtri bday X + bday s bday X + bday 0 s = bday X + bday s
141 rightssold R Y Old bday Y
142 141 sseli s R Y s Old bday Y
143 oldbday bday Y On s No s Old bday Y bday s bday Y
144 32 131 143 sylancr s R Y s Old bday Y bday s bday Y
145 142 144 mpbid s R Y bday s bday Y
146 naddel2 bday s On bday Y On bday X On bday s bday Y bday X + bday s bday X + bday Y
147 135 32 40 146 mp3an bday s bday Y bday X + bday s bday X + bday Y
148 145 147 sylib s R Y bday X + bday s bday X + bday Y
149 148 adantl φ s R Y bday X + bday s bday X + bday Y
150 elun1 bday X + bday s bday X + bday Y bday X + bday s bday X + bday Y bday X + bday Z
151 149 150 syl φ s R Y bday X + bday s bday X + bday Y bday X + bday Z
152 140 151 eqeltrid φ s R Y bday X + bday s bday X + bday 0 s bday X + bday Y bday X + bday Z
153 128 129 132 133 152 addsproplem1 φ s R Y X + s s No s < s 0 s s + s X < s 0 s + s X
154 153 simpld φ s R Y X + s s No
155 eleq1a X + s s No t = X + s s t No
156 154 155 syl φ s R Y t = X + s s t No
157 156 rexlimdva φ s R Y t = X + s s t No
158 157 abssdv φ t | s R Y t = X + s s No
159 127 158 unssd φ w | r R X w = r + s Y t | s R Y t = X + s s No
160 elun a p | l L X p = l + s Y q | m L Y q = X + s m a p | l L X p = l + s Y a q | m L Y q = X + s m
161 vex a V
162 eqeq1 p = a p = l + s Y a = l + s Y
163 162 rexbidv p = a l L X p = l + s Y l L X a = l + s Y
164 161 163 elab a p | l L X p = l + s Y l L X a = l + s Y
165 eqeq1 q = a q = X + s m a = X + s m
166 165 rexbidv q = a m L Y q = X + s m m L Y a = X + s m
167 161 166 elab a q | m L Y q = X + s m m L Y a = X + s m
168 164 167 orbi12i a p | l L X p = l + s Y a q | m L Y q = X + s m l L X a = l + s Y m L Y a = X + s m
169 160 168 bitri a p | l L X p = l + s Y q | m L Y q = X + s m l L X a = l + s Y m L Y a = X + s m
170 elun b w | r R X w = r + s Y t | s R Y t = X + s s b w | r R X w = r + s Y b t | s R Y t = X + s s
171 vex b V
172 eqeq1 w = b w = r + s Y b = r + s Y
173 172 rexbidv w = b r R X w = r + s Y r R X b = r + s Y
174 171 173 elab b w | r R X w = r + s Y r R X b = r + s Y
175 eqeq1 t = b t = X + s s b = X + s s
176 175 rexbidv t = b s R Y t = X + s s s R Y b = X + s s
177 171 176 elab b t | s R Y t = X + s s s R Y b = X + s s
178 174 177 orbi12i b w | r R X w = r + s Y b t | s R Y t = X + s s r R X b = r + s Y s R Y b = X + s s
179 170 178 bitri b w | r R X w = r + s Y t | s R Y t = X + s s r R X b = r + s Y s R Y b = X + s s
180 169 179 anbi12i a p | l L X p = l + s Y q | m L Y q = X + s m b w | r R X w = r + s Y t | s R Y t = X + s s l L X a = l + s Y m L Y a = X + s m r R X b = r + s Y s R Y b = X + s s
181 anddi l L X a = l + s Y m L Y a = X + s m r R X b = r + s Y s R Y b = X + s s l L X a = l + s Y r R X b = r + s Y l L X a = l + s Y s R Y b = X + s s m L Y a = X + s m r R X b = r + s Y m L Y a = X + s m s R Y b = X + s s
182 180 181 bitri a p | l L X p = l + s Y q | m L Y q = X + s m b w | r R X w = r + s Y t | s R Y t = X + s s l L X a = l + s Y r R X b = r + s Y l L X a = l + s Y s R Y b = X + s s m L Y a = X + s m r R X b = r + s Y m L Y a = X + s m s R Y b = X + s s
183 reeanv l L X r R X a = l + s Y b = r + s Y l L X a = l + s Y r R X b = r + s Y
184 lltropt L X s R X
185 184 a1i φ l L X r R X L X s R X
186 simprl φ l L X r R X l L X
187 simprr φ l L X r R X r R X
188 185 186 187 ssltsepcd φ l L X r R X l < s r
189 1 adantr φ l L X r R X x No y No z No bday x + bday y bday x + bday z bday X + bday Y bday X + bday Z x + s y No y < s z y + s x < s z + s x
190 3 adantr φ l L X r R X Y No
191 20 ad2antrl φ l L X r R X l No
192 95 ad2antll φ l L X r R X r No
193 naddcom bday Y On bday l On bday Y + bday l = bday l + bday Y
194 32 27 193 mp2an bday Y + bday l = bday l + bday Y
195 46 ad2antrl φ l L X r R X bday l + bday Y bday X + bday Y
196 194 195 eqeltrid φ l L X r R X bday Y + bday l bday X + bday Y
197 naddcom bday Y On bday r On bday Y + bday r = bday r + bday Y
198 32 100 197 mp2an bday Y + bday r = bday r + bday Y
199 117 ad2antll φ l L X r R X bday r + bday Y bday X + bday Y
200 198 199 eqeltrid φ l L X r R X bday Y + bday r bday X + bday Y
201 naddcl bday Y On bday l On bday Y + bday l On
202 32 27 201 mp2an bday Y + bday l On
203 naddcl bday Y On bday r On bday Y + bday r On
204 32 100 203 mp2an bday Y + bday r On
205 naddcl bday X On bday Y On bday X + bday Y On
206 40 32 205 mp2an bday X + bday Y On
207 onunel bday Y + bday l On bday Y + bday r On bday X + bday Y On bday Y + bday l bday Y + bday r bday X + bday Y bday Y + bday l bday X + bday Y bday Y + bday r bday X + bday Y
208 202 204 206 207 mp3an bday Y + bday l bday Y + bday r bday X + bday Y bday Y + bday l bday X + bday Y bday Y + bday r bday X + bday Y
209 196 200 208 sylanbrc φ l L X r R X bday Y + bday l bday Y + bday r bday X + bday Y
210 elun1 bday Y + bday l bday Y + bday r bday X + bday Y bday Y + bday l bday Y + bday r bday X + bday Y bday X + bday Z
211 209 210 syl φ l L X r R X bday Y + bday l bday Y + bday r bday X + bday Y bday X + bday Z
212 189 190 191 192 211 addsproplem1 φ l L X r R X Y + s l No l < s r l + s Y < s r + s Y
213 212 simprd φ l L X r R X l < s r l + s Y < s r + s Y
214 188 213 mpd φ l L X r R X l + s Y < s r + s Y
215 breq12 a = l + s Y b = r + s Y a < s b l + s Y < s r + s Y
216 214 215 syl5ibrcom φ l L X r R X a = l + s Y b = r + s Y a < s b
217 216 rexlimdvva φ l L X r R X a = l + s Y b = r + s Y a < s b
218 183 217 biimtrrid φ l L X a = l + s Y r R X b = r + s Y a < s b
219 reeanv l L X s R Y a = l + s Y b = X + s s l L X a = l + s Y s R Y b = X + s s
220 52 adantrr φ l L X s R Y l + s Y No
221 1 adantr φ l L X s R Y x No y No z No bday x + bday y bday x + bday z bday X + bday Y bday X + bday Z x + s y No y < s z y + s x < s z + s x
222 20 ad2antrl φ l L X s R Y l No
223 131 ad2antll φ l L X s R Y s No
224 23 a1i φ l L X s R Y 0 s No
225 30 uneq2i bday l + bday s bday l + bday 0 s = bday l + bday s bday l
226 naddword1 bday l On bday s On bday l bday l + bday s
227 27 135 226 mp2an bday l bday l + bday s
228 ssequn2 bday l bday l + bday s bday l + bday s bday l = bday l + bday s
229 227 228 mpbi bday l + bday s bday l = bday l + bday s
230 225 229 eqtri bday l + bday s bday l + bday 0 s = bday l + bday s
231 naddel1 bday l On bday X On bday s On bday l bday X bday l + bday s bday X + bday s
232 27 40 135 231 mp3an bday l bday X bday l + bday s bday X + bday s
233 43 232 sylib l L X bday l + bday s bday X + bday s
234 233 ad2antrl φ l L X s R Y bday l + bday s bday X + bday s
235 148 ad2antll φ l L X s R Y bday X + bday s bday X + bday Y
236 ontr1 bday X + bday Y On bday l + bday s bday X + bday s bday X + bday s bday X + bday Y bday l + bday s bday X + bday Y
237 206 236 ax-mp bday l + bday s bday X + bday s bday X + bday s bday X + bday Y bday l + bday s bday X + bday Y
238 234 235 237 syl2anc φ l L X s R Y bday l + bday s bday X + bday Y
239 elun1 bday l + bday s bday X + bday Y bday l + bday s bday X + bday Y bday X + bday Z
240 238 239 syl φ l L X s R Y bday l + bday s bday X + bday Y bday X + bday Z
241 230 240 eqeltrid φ l L X s R Y bday l + bday s bday l + bday 0 s bday X + bday Y bday X + bday Z
242 221 222 223 224 241 addsproplem1 φ l L X s R Y l + s s No s < s 0 s s + s l < s 0 s + s l
243 242 simpld φ l L X s R Y l + s s No
244 154 adantrl φ l L X s R Y X + s s No
245 rightgt s R Y Y < s s
246 245 ad2antll φ l L X s R Y Y < s s
247 3 adantr φ l L X s R Y Y No
248 46 ad2antrl φ l L X s R Y bday l + bday Y bday X + bday Y
249 naddcl bday l On bday Y On bday l + bday Y On
250 27 32 249 mp2an bday l + bday Y On
251 naddcl bday l On bday s On bday l + bday s On
252 27 135 251 mp2an bday l + bday s On
253 onunel bday l + bday Y On bday l + bday s On bday X + bday Y On bday l + bday Y bday l + bday s bday X + bday Y bday l + bday Y bday X + bday Y bday l + bday s bday X + bday Y
254 250 252 206 253 mp3an bday l + bday Y bday l + bday s bday X + bday Y bday l + bday Y bday X + bday Y bday l + bday s bday X + bday Y
255 248 238 254 sylanbrc φ l L X s R Y bday l + bday Y bday l + bday s bday X + bday Y
256 elun1 bday l + bday Y bday l + bday s bday X + bday Y bday l + bday Y bday l + bday s bday X + bday Y bday X + bday Z
257 255 256 syl φ l L X s R Y bday l + bday Y bday l + bday s bday X + bday Y bday X + bday Z
258 221 222 247 223 257 addsproplem1 φ l L X s R Y l + s Y No Y < s s Y + s l < s s + s l
259 258 simprd φ l L X s R Y Y < s s Y + s l < s s + s l
260 246 259 mpd φ l L X s R Y Y + s l < s s + s l
261 222 247 addscomd φ l L X s R Y l + s Y = Y + s l
262 222 223 addscomd φ l L X s R Y l + s s = s + s l
263 260 261 262 3brtr4d φ l L X s R Y l + s Y < s l + s s
264 leftlt l L X l < s X
265 264 ad2antrl φ l L X s R Y l < s X
266 2 adantr φ l L X s R Y X No
267 naddcom bday s On bday l On bday s + bday l = bday l + bday s
268 135 27 267 mp2an bday s + bday l = bday l + bday s
269 268 238 eqeltrid φ l L X s R Y bday s + bday l bday X + bday Y
270 naddcom bday s On bday X On bday s + bday X = bday X + bday s
271 135 40 270 mp2an bday s + bday X = bday X + bday s
272 271 235 eqeltrid φ l L X s R Y bday s + bday X bday X + bday Y
273 naddcl bday s On bday l On bday s + bday l On
274 135 27 273 mp2an bday s + bday l On
275 naddcl bday s On bday X On bday s + bday X On
276 135 40 275 mp2an bday s + bday X On
277 onunel bday s + bday l On bday s + bday X On bday X + bday Y On bday s + bday l bday s + bday X bday X + bday Y bday s + bday l bday X + bday Y bday s + bday X bday X + bday Y
278 274 276 206 277 mp3an bday s + bday l bday s + bday X bday X + bday Y bday s + bday l bday X + bday Y bday s + bday X bday X + bday Y
279 269 272 278 sylanbrc φ l L X s R Y bday s + bday l bday s + bday X bday X + bday Y
280 elun1 bday s + bday l bday s + bday X bday X + bday Y bday s + bday l bday s + bday X bday X + bday Y bday X + bday Z
281 279 280 syl φ l L X s R Y bday s + bday l bday s + bday X bday X + bday Y bday X + bday Z
282 221 223 222 266 281 addsproplem1 φ l L X s R Y s + s l No l < s X l + s s < s X + s s
283 282 simprd φ l L X s R Y l < s X l + s s < s X + s s
284 265 283 mpd φ l L X s R Y l + s s < s X + s s
285 220 243 244 263 284 slttrd φ l L X s R Y l + s Y < s X + s s
286 breq12 a = l + s Y b = X + s s a < s b l + s Y < s X + s s
287 285 286 syl5ibrcom φ l L X s R Y a = l + s Y b = X + s s a < s b
288 287 rexlimdvva φ l L X s R Y a = l + s Y b = X + s s a < s b
289 219 288 biimtrrid φ l L X a = l + s Y s R Y b = X + s s a < s b
290 218 289 jaod φ l L X a = l + s Y r R X b = r + s Y l L X a = l + s Y s R Y b = X + s s a < s b
291 reeanv m L Y r R X a = X + s m b = r + s Y m L Y a = X + s m r R X b = r + s Y
292 1 adantr φ m L Y r R X x No y No z No bday x + bday y bday x + bday z bday X + bday Y bday X + bday Z x + s y No y < s z y + s x < s z + s x
293 2 adantr φ m L Y r R X X No
294 60 ad2antrl φ m L Y r R X m No
295 23 a1i φ m L Y r R X 0 s No
296 81 ad2antrl φ m L Y r R X bday X + bday m bday X + bday Y
297 296 83 syl φ m L Y r R X bday X + bday m bday X + bday Y bday X + bday Z
298 73 297 eqeltrid φ m L Y r R X bday X + bday m bday X + bday 0 s bday X + bday Y bday X + bday Z
299 292 293 294 295 298 addsproplem1 φ m L Y r R X X + s m No m < s 0 s m + s X < s 0 s + s X
300 299 simpld φ m L Y r R X X + s m No
301 95 ad2antll φ m L Y r R X r No
302 103 uneq2i bday r + bday m bday r + bday 0 s = bday r + bday m bday r
303 naddword1 bday r On bday m On bday r bday r + bday m
304 100 68 303 mp2an bday r bday r + bday m
305 ssequn2 bday r bday r + bday m bday r + bday m bday r = bday r + bday m
306 304 305 mpbi bday r + bday m bday r = bday r + bday m
307 302 306 eqtri bday r + bday m bday r + bday 0 s = bday r + bday m
308 naddel1 bday r On bday X On bday m On bday r bday X bday r + bday m bday X + bday m
309 100 40 68 308 mp3an bday r bday X bday r + bday m bday X + bday m
310 114 309 sylib r R X bday r + bday m bday X + bday m
311 310 ad2antll φ m L Y r R X bday r + bday m bday X + bday m
312 ontr1 bday X + bday Y On bday r + bday m bday X + bday m bday X + bday m bday X + bday Y bday r + bday m bday X + bday Y
313 206 312 ax-mp bday r + bday m bday X + bday m bday X + bday m bday X + bday Y bday r + bday m bday X + bday Y
314 311 296 313 syl2anc φ m L Y r R X bday r + bday m bday X + bday Y
315 elun1 bday r + bday m bday X + bday Y bday r + bday m bday X + bday Y bday X + bday Z
316 314 315 syl φ m L Y r R X bday r + bday m bday X + bday Y bday X + bday Z
317 307 316 eqeltrid φ m L Y r R X bday r + bday m bday r + bday 0 s bday X + bday Y bday X + bday Z
318 292 301 294 295 317 addsproplem1 φ m L Y r R X r + s m No m < s 0 s m + s r < s 0 s + s r
319 318 simpld φ m L Y r R X r + s m No
320 3 adantr φ m L Y r R X Y No
321 117 ad2antll φ m L Y r R X bday r + bday Y bday X + bday Y
322 321 119 syl φ m L Y r R X bday r + bday Y bday X + bday Y bday X + bday Z
323 109 322 eqeltrid φ m L Y r R X bday r + bday Y bday r + bday 0 s bday X + bday Y bday X + bday Z
324 292 301 320 295 323 addsproplem1 φ m L Y r R X r + s Y No Y < s 0 s Y + s r < s 0 s + s r
325 324 simpld φ m L Y r R X r + s Y No
326 rightval R X = r Old bday X | X < s r
327 326 eleq2i r R X r r Old bday X | X < s r
328 327 biimpi r R X r r Old bday X | X < s r
329 328 ad2antll φ m L Y r R X r r Old bday X | X < s r
330 rabid r r Old bday X | X < s r r Old bday X X < s r
331 329 330 sylib φ m L Y r R X r Old bday X X < s r
332 331 simprd φ m L Y r R X X < s r
333 naddcom bday m On bday X On bday m + bday X = bday X + bday m
334 68 40 333 mp2an bday m + bday X = bday X + bday m
335 334 296 eqeltrid φ m L Y r R X bday m + bday X bday X + bday Y
336 naddcom bday m On bday r On bday m + bday r = bday r + bday m
337 68 100 336 mp2an bday m + bday r = bday r + bday m
338 337 314 eqeltrid φ m L Y r R X bday m + bday r bday X + bday Y
339 naddcl bday m On bday X On bday m + bday X On
340 68 40 339 mp2an bday m + bday X On
341 naddcl bday m On bday r On bday m + bday r On
342 68 100 341 mp2an bday m + bday r On
343 onunel bday m + bday X On bday m + bday r On bday X + bday Y On bday m + bday X bday m + bday r bday X + bday Y bday m + bday X bday X + bday Y bday m + bday r bday X + bday Y
344 340 342 206 343 mp3an bday m + bday X bday m + bday r bday X + bday Y bday m + bday X bday X + bday Y bday m + bday r bday X + bday Y
345 335 338 344 sylanbrc φ m L Y r R X bday m + bday X bday m + bday r bday X + bday Y
346 elun1 bday m + bday X bday m + bday r bday X + bday Y bday m + bday X bday m + bday r bday X + bday Y bday X + bday Z
347 345 346 syl φ m L Y r R X bday m + bday X bday m + bday r bday X + bday Y bday X + bday Z
348 292 294 293 301 347 addsproplem1 φ m L Y r R X m + s X No X < s r X + s m < s r + s m
349 348 simprd φ m L Y r R X X < s r X + s m < s r + s m
350 332 349 mpd φ m L Y r R X X + s m < s r + s m
351 leftval L Y = m Old bday Y | m < s Y
352 351 eleq2i m L Y m m Old bday Y | m < s Y
353 352 biimpi m L Y m m Old bday Y | m < s Y
354 353 ad2antrl φ m L Y r R X m m Old bday Y | m < s Y
355 rabid m m Old bday Y | m < s Y m Old bday Y m < s Y
356 354 355 sylib φ m L Y r R X m Old bday Y m < s Y
357 356 simprd φ m L Y r R X m < s Y
358 naddcl bday r On bday m On bday r + bday m On
359 100 68 358 mp2an bday r + bday m On
360 naddcl bday r On bday Y On bday r + bday Y On
361 100 32 360 mp2an bday r + bday Y On
362 onunel bday r + bday m On bday r + bday Y On bday X + bday Y On bday r + bday m bday r + bday Y bday X + bday Y bday r + bday m bday X + bday Y bday r + bday Y bday X + bday Y
363 359 361 206 362 mp3an bday r + bday m bday r + bday Y bday X + bday Y bday r + bday m bday X + bday Y bday r + bday Y bday X + bday Y
364 314 321 363 sylanbrc φ m L Y r R X bday r + bday m bday r + bday Y bday X + bday Y
365 elun1 bday r + bday m bday r + bday Y bday X + bday Y bday r + bday m bday r + bday Y bday X + bday Y bday X + bday Z
366 364 365 syl φ m L Y r R X bday r + bday m bday r + bday Y bday X + bday Y bday X + bday Z
367 292 301 294 320 366 addsproplem1 φ m L Y r R X r + s m No m < s Y m + s r < s Y + s r
368 367 simprd φ m L Y r R X m < s Y m + s r < s Y + s r
369 357 368 mpd φ m L Y r R X m + s r < s Y + s r
370 301 294 addscomd φ m L Y r R X r + s m = m + s r
371 301 320 addscomd φ m L Y r R X r + s Y = Y + s r
372 369 370 371 3brtr4d φ m L Y r R X r + s m < s r + s Y
373 300 319 325 350 372 slttrd φ m L Y r R X X + s m < s r + s Y
374 breq12 a = X + s m b = r + s Y a < s b X + s m < s r + s Y
375 373 374 syl5ibrcom φ m L Y r R X a = X + s m b = r + s Y a < s b
376 375 rexlimdvva φ m L Y r R X a = X + s m b = r + s Y a < s b
377 291 376 biimtrrid φ m L Y a = X + s m r R X b = r + s Y a < s b
378 reeanv m L Y s R Y a = X + s m b = X + s s m L Y a = X + s m s R Y b = X + s s
379 lltropt L Y s R Y
380 379 a1i φ m L Y s R Y L Y s R Y
381 simprl φ m L Y s R Y m L Y
382 simprr φ m L Y s R Y s R Y
383 380 381 382 ssltsepcd φ m L Y s R Y m < s s
384 1 adantr φ m L Y s R Y x No y No z No bday x + bday y bday x + bday z bday X + bday Y bday X + bday Z x + s y No y < s z y + s x < s z + s x
385 2 adantr φ m L Y s R Y X No
386 60 ad2antrl φ m L Y s R Y m No
387 131 ad2antll φ m L Y s R Y s No
388 81 ad2antrl φ m L Y s R Y bday X + bday m bday X + bday Y
389 148 ad2antll φ m L Y s R Y bday X + bday s bday X + bday Y
390 naddcl bday X On bday m On bday X + bday m On
391 40 68 390 mp2an bday X + bday m On
392 naddcl bday X On bday s On bday X + bday s On
393 40 135 392 mp2an bday X + bday s On
394 onunel bday X + bday m On bday X + bday s On bday X + bday Y On bday X + bday m bday X + bday s bday X + bday Y bday X + bday m bday X + bday Y bday X + bday s bday X + bday Y
395 391 393 206 394 mp3an bday X + bday m bday X + bday s bday X + bday Y bday X + bday m bday X + bday Y bday X + bday s bday X + bday Y
396 388 389 395 sylanbrc φ m L Y s R Y bday X + bday m bday X + bday s bday X + bday Y
397 elun1 bday X + bday m bday X + bday s bday X + bday Y bday X + bday m bday X + bday s bday X + bday Y bday X + bday Z
398 396 397 syl φ m L Y s R Y bday X + bday m bday X + bday s bday X + bday Y bday X + bday Z
399 384 385 386 387 398 addsproplem1 φ m L Y s R Y X + s m No m < s s m + s X < s s + s X
400 399 simprd φ m L Y s R Y m < s s m + s X < s s + s X
401 383 400 mpd φ m L Y s R Y m + s X < s s + s X
402 385 386 addscomd φ m L Y s R Y X + s m = m + s X
403 385 387 addscomd φ m L Y s R Y X + s s = s + s X
404 401 402 403 3brtr4d φ m L Y s R Y X + s m < s X + s s
405 breq12 a = X + s m b = X + s s a < s b X + s m < s X + s s
406 404 405 syl5ibrcom φ m L Y s R Y a = X + s m b = X + s s a < s b
407 406 rexlimdvva φ m L Y s R Y a = X + s m b = X + s s a < s b
408 378 407 biimtrrid φ m L Y a = X + s m s R Y b = X + s s a < s b
409 377 408 jaod φ m L Y a = X + s m r R X b = r + s Y m L Y a = X + s m s R Y b = X + s s a < s b
410 290 409 jaod φ l L X a = l + s Y r R X b = r + s Y l L X a = l + s Y s R Y b = X + s s m L Y a = X + s m r R X b = r + s Y m L Y a = X + s m s R Y b = X + s s a < s b
411 182 410 biimtrid φ a p | l L X p = l + s Y q | m L Y q = X + s m b w | r R X w = r + s Y t | s R Y t = X + s s a < s b
412 411 3impib φ a p | l L X p = l + s Y q | m L Y q = X + s m b w | r R X w = r + s Y t | s R Y t = X + s s a < s b
413 10 17 92 159 412 ssltd φ p | l L X p = l + s Y q | m L Y q = X + s m s w | r R X w = r + s Y t | s R Y t = X + s s