Metamath Proof Explorer


Theorem alephreg

Description: A successor aleph is regular. Theorem 11.15 of TakeutiZaring p. 103. (Contributed by Mario Carneiro, 9-Mar-2013)

Ref Expression
Assertion alephreg cfsucA=sucA

Proof

Step Hyp Ref Expression
1 alephordilem1 AOnAsucA
2 alephon sucAOn
3 cff1 sucAOnff:cfsucA1-1sucAxsucAycfsucAxfy
4 2 3 ax-mp ff:cfsucA1-1sucAxsucAycfsucAxfy
5 fvex cfsucAV
6 fvex fyV
7 6 sucex sucfyV
8 5 7 iunex ycfsucAsucfyV
9 f1f f:cfsucA1-1sucAf:cfsucAsucA
10 9 ad2antrr f:cfsucA1-1sucAxsucAycfsucAxfyAOncfsucAsucAf:cfsucAsucA
11 simplr f:cfsucA1-1sucAxsucAycfsucAxfyAOncfsucAsucAxsucAycfsucAxfy
12 2 oneli xsucAxOn
13 ffvelcdm f:cfsucAsucAycfsucAfysucA
14 onelon sucAOnfysucAfyOn
15 2 13 14 sylancr f:cfsucAsucAycfsucAfyOn
16 onsssuc xOnfyOnxfyxsucfy
17 15 16 sylan2 xOnf:cfsucAsucAycfsucAxfyxsucfy
18 17 anassrs xOnf:cfsucAsucAycfsucAxfyxsucfy
19 18 rexbidva xOnf:cfsucAsucAycfsucAxfyycfsucAxsucfy
20 eliun xycfsucAsucfyycfsucAxsucfy
21 19 20 bitr4di xOnf:cfsucAsucAycfsucAxfyxycfsucAsucfy
22 21 ancoms f:cfsucAsucAxOnycfsucAxfyxycfsucAsucfy
23 12 22 sylan2 f:cfsucAsucAxsucAycfsucAxfyxycfsucAsucfy
24 23 ralbidva f:cfsucAsucAxsucAycfsucAxfyxsucAxycfsucAsucfy
25 dfss3 sucAycfsucAsucfyxsucAxycfsucAsucfy
26 24 25 bitr4di f:cfsucAsucAxsucAycfsucAxfysucAycfsucAsucfy
27 26 biimpa f:cfsucAsucAxsucAycfsucAxfysucAycfsucAsucfy
28 10 11 27 syl2anc f:cfsucA1-1sucAxsucAycfsucAxfyAOncfsucAsucAsucAycfsucAsucfy
29 ssdomg ycfsucAsucfyVsucAycfsucAsucfysucAycfsucAsucfy
30 8 28 29 mpsyl f:cfsucA1-1sucAxsucAycfsucAxfyAOncfsucAsucAsucAycfsucAsucfy
31 simprl f:cfsucA1-1sucAxsucAycfsucAxfyAOncfsucAsucAAOn
32 onsuc AOnsucAOn
33 alephislim sucAOnLimsucA
34 limsuc LimsucAfysucAsucfysucA
35 33 34 sylbi sucAOnfysucAsucfysucA
36 32 35 syl AOnfysucAsucfysucA
37 breq1 z=sucfyzsucAsucfysucA
38 alephcard cardsucA=sucA
39 iscard cardsucA=sucAsucAOnzsucAzsucA
40 39 simprbi cardsucA=sucAzsucAzsucA
41 38 40 ax-mp zsucAzsucA
42 37 41 vtoclri sucfysucAsucfysucA
43 alephsucdom AOnsucfyAsucfysucA
44 42 43 imbitrrid AOnsucfysucAsucfyA
45 36 44 sylbid AOnfysucAsucfyA
46 13 45 syl5 AOnf:cfsucAsucAycfsucAsucfyA
47 46 expdimp AOnf:cfsucAsucAycfsucAsucfyA
48 47 ralrimiv AOnf:cfsucAsucAycfsucAsucfyA
49 iundom cfsucAVycfsucAsucfyAycfsucAsucfycfsucA×A
50 5 48 49 sylancr AOnf:cfsucAsucAycfsucAsucfycfsucA×A
51 31 10 50 syl2anc f:cfsucA1-1sucAxsucAycfsucAxfyAOncfsucAsucAycfsucAsucfycfsucA×A
52 domtr sucAycfsucAsucfyycfsucAsucfycfsucA×AsucAcfsucA×A
53 30 51 52 syl2anc f:cfsucA1-1sucAxsucAycfsucAxfyAOncfsucAsucAsucAcfsucA×A
54 53 expcom AOncfsucAsucAf:cfsucA1-1sucAxsucAycfsucAxfysucAcfsucA×A
55 54 exlimdv AOncfsucAsucAff:cfsucA1-1sucAxsucAycfsucAxfysucAcfsucA×A
56 4 55 mpi AOncfsucAsucAsucAcfsucA×A
57 alephgeom AOnωA
58 alephon AOn
59 infxpen AOnωAA×AA
60 58 59 mpan ωAA×AA
61 57 60 sylbi AOnA×AA
62 breq1 z=cfsucAzsucAcfsucAsucA
63 62 41 vtoclri cfsucAsucAcfsucAsucA
64 alephsucdom AOncfsucAAcfsucAsucA
65 63 64 imbitrrid AOncfsucAsucAcfsucAA
66 fvex AV
67 66 xpdom1 cfsucAAcfsucA×AA×A
68 65 67 syl6 AOncfsucAsucAcfsucA×AA×A
69 domentr cfsucA×AA×AA×AAcfsucA×AA
70 69 expcom A×AAcfsucA×AA×AcfsucA×AA
71 61 68 70 sylsyld AOncfsucAsucAcfsucA×AA
72 71 imp AOncfsucAsucAcfsucA×AA
73 domtr sucAcfsucA×AcfsucA×AAsucAA
74 56 72 73 syl2anc AOncfsucAsucAsucAA
75 domnsym sucAA¬AsucA
76 74 75 syl AOncfsucAsucA¬AsucA
77 76 ex AOncfsucAsucA¬AsucA
78 1 77 mt2d AOn¬cfsucAsucA
79 cfon cfsucAOn
80 cfle cfsucAsucA
81 onsseleq cfsucAOnsucAOncfsucAsucAcfsucAsucAcfsucA=sucA
82 80 81 mpbii cfsucAOnsucAOncfsucAsucAcfsucA=sucA
83 79 2 82 mp2an cfsucAsucAcfsucA=sucA
84 83 ori ¬cfsucAsucAcfsucA=sucA
85 78 84 syl AOncfsucA=sucA
86 cf0 cf=
87 alephfnon FnOn
88 87 fndmi dom=On
89 88 eleq2i sucAdomsucAOn
90 onsucb AOnsucAOn
91 89 90 bitr4i sucAdomAOn
92 ndmfv ¬sucAdomsucA=
93 91 92 sylnbir ¬AOnsucA=
94 93 fveq2d ¬AOncfsucA=cf
95 86 94 93 3eqtr4a ¬AOncfsucA=sucA
96 85 95 pm2.61i cfsucA=sucA