Metamath Proof Explorer


Theorem amgmw2d

Description: Weighted arithmetic-geometric mean inequality for n = 2 (compare amgm2d ). (Contributed by Kunhao Zheng, 20-Jun-2021)

Ref Expression
Hypotheses amgmw2d.0 φA+
amgmw2d.1 φP+
amgmw2d.2 φB+
amgmw2d.3 φQ+
amgmw2d.4 φP+Q=1
Assertion amgmw2d φAPBQAP+BQ

Proof

Step Hyp Ref Expression
1 amgmw2d.0 φA+
2 amgmw2d.1 φP+
3 amgmw2d.2 φB+
4 amgmw2d.3 φQ+
5 amgmw2d.4 φP+Q=1
6 eqid mulGrpfld=mulGrpfld
7 fzofi 0..^2Fin
8 7 a1i φ0..^2Fin
9 2nn 2
10 lbfzo0 00..^22
11 9 10 mpbir 00..^2
12 ne0i 00..^20..^2
13 11 12 mp1i φ0..^2
14 1 3 s2cld φ⟨“AB”⟩Word+
15 wrdf ⟨“AB”⟩Word+⟨“AB”⟩:0..^⟨“AB”⟩+
16 14 15 syl φ⟨“AB”⟩:0..^⟨“AB”⟩+
17 s2len ⟨“AB”⟩=2
18 17 oveq2i 0..^⟨“AB”⟩=0..^2
19 18 feq2i ⟨“AB”⟩:0..^⟨“AB”⟩+⟨“AB”⟩:0..^2+
20 16 19 sylib φ⟨“AB”⟩:0..^2+
21 2 4 s2cld φ⟨“PQ”⟩Word+
22 wrdf ⟨“PQ”⟩Word+⟨“PQ”⟩:0..^⟨“PQ”⟩+
23 21 22 syl φ⟨“PQ”⟩:0..^⟨“PQ”⟩+
24 s2len ⟨“PQ”⟩=2
25 24 oveq2i 0..^⟨“PQ”⟩=0..^2
26 25 feq2i ⟨“PQ”⟩:0..^⟨“PQ”⟩+⟨“PQ”⟩:0..^2+
27 23 26 sylib φ⟨“PQ”⟩:0..^2+
28 cnring fldRing
29 ringmnd fldRingfldMnd
30 28 29 mp1i φfldMnd
31 2 rpcnd φP
32 4 rpcnd φQ
33 cnfldbas =Basefld
34 cnfldadd +=+fld
35 33 34 gsumws2 fldMndPQfld⟨“PQ”⟩=P+Q
36 30 31 32 35 syl3anc φfld⟨“PQ”⟩=P+Q
37 36 5 eqtrd φfld⟨“PQ”⟩=1
38 6 8 13 20 27 37 amgmwlem φmulGrpfld⟨“AB”⟩cf⟨“PQ”⟩fld⟨“AB”⟩×f⟨“PQ”⟩
39 1 3 jca φA+B+
40 2 4 jca φP+Q+
41 ofs2 A+B+P+Q+⟨“AB”⟩cf⟨“PQ”⟩=⟨“APBQ”⟩
42 39 40 41 syl2anc φ⟨“AB”⟩cf⟨“PQ”⟩=⟨“APBQ”⟩
43 42 oveq2d φmulGrpfld⟨“AB”⟩cf⟨“PQ”⟩=mulGrpfld⟨“APBQ”⟩
44 6 ringmgp fldRingmulGrpfldMnd
45 28 44 mp1i φmulGrpfldMnd
46 2 rpred φP
47 1 46 rpcxpcld φAP+
48 47 rpcnd φAP
49 4 rpred φQ
50 3 49 rpcxpcld φBQ+
51 50 rpcnd φBQ
52 6 33 mgpbas =BasemulGrpfld
53 cnfldmul ×=fld
54 6 53 mgpplusg ×=+mulGrpfld
55 52 54 gsumws2 mulGrpfldMndAPBQmulGrpfld⟨“APBQ”⟩=APBQ
56 45 48 51 55 syl3anc φmulGrpfld⟨“APBQ”⟩=APBQ
57 43 56 eqtrd φmulGrpfld⟨“AB”⟩cf⟨“PQ”⟩=APBQ
58 ofs2 A+B+P+Q+⟨“AB”⟩×f⟨“PQ”⟩=⟨“APBQ”⟩
59 39 40 58 syl2anc φ⟨“AB”⟩×f⟨“PQ”⟩=⟨“APBQ”⟩
60 59 oveq2d φfld⟨“AB”⟩×f⟨“PQ”⟩=fld⟨“APBQ”⟩
61 1 2 rpmulcld φAP+
62 61 rpcnd φAP
63 3 4 rpmulcld φBQ+
64 63 rpcnd φBQ
65 33 34 gsumws2 fldMndAPBQfld⟨“APBQ”⟩=AP+BQ
66 30 62 64 65 syl3anc φfld⟨“APBQ”⟩=AP+BQ
67 60 66 eqtrd φfld⟨“AB”⟩×f⟨“PQ”⟩=AP+BQ
68 38 57 67 3brtr3d φAPBQAP+BQ