Description: Archimedean left- and right- ordered groups are Abelian. (Contributed by Thierry Arnoux, 1-May-2018)
Ref | Expression | ||
---|---|---|---|
Assertion | archiabl | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid | |
|
2 | eqid | |
|
3 | eqid | |
|
4 | eqid | |
|
5 | eqid | |
|
6 | simpll1 | |
|
7 | simpll3 | |
|
8 | simplr | |
|
9 | simprl | |
|
10 | simp2 | |
|
11 | simp1rr | |
|
12 | simp3 | |
|
13 | breq2 | |
|
14 | breq2 | |
|
15 | 13 14 | imbi12d | |
16 | 15 | rspcv | |
17 | 10 11 12 16 | syl3c | |
18 | 1 2 3 4 5 6 7 8 9 17 | archiabllem1 | |
19 | 18 | adantllr | |
20 | simpr | |
|
21 | breq2 | |
|
22 | breq1 | |
|
23 | 22 | imbi2d | |
24 | 23 | ralbidv | |
25 | 21 24 | anbi12d | |
26 | 25 | cbvrexvw | |
27 | 20 26 | sylib | |
28 | 19 27 | r19.29a | |
29 | simpl1 | |
|
30 | simpl3 | |
|
31 | eqid | |
|
32 | simpl2 | |
|
33 | simpr | |
|
34 | ralnex | |
|
35 | 33 34 | sylibr | |
36 | rexanali | |
|
37 | 36 | imbi2i | |
38 | imnan | |
|
39 | 37 38 | bitri | |
40 | 39 | ralbii | |
41 | 35 40 | sylibr | |
42 | 22 | notbid | |
43 | 42 | anbi2d | |
44 | 43 | rexbidv | |
45 | 21 44 | imbi12d | |
46 | 45 | cbvralvw | |
47 | 41 46 | sylib | |
48 | 47 | r19.21bi | |
49 | 14 | notbid | |
50 | 13 49 | anbi12d | |
51 | 50 | cbvrexvw | |
52 | 48 51 | imbitrdi | |
53 | 52 | 3impia | |
54 | simp1l1 | |
|
55 | isogrp | |
|
56 | 55 | simprbi | |
57 | omndtos | |
|
58 | 54 56 57 | 3syl | |
59 | simp2 | |
|
60 | 1 3 4 | tltnle | |
61 | 60 | bicomd | |
62 | 61 | 3com23 | |
63 | 62 | 3expa | |
64 | 63 | anbi2d | |
65 | 64 | rexbidva | |
66 | 58 59 65 | syl2anc | |
67 | 53 66 | mpbid | |
68 | 1 2 3 4 5 29 30 31 32 67 | archiabllem2 | |
69 | 28 68 | pm2.61dan | |