Metamath Proof Explorer


Theorem atanlogsub

Description: A variation on atanlogadd , to show that sqrt ( 1 +i z ) / sqrt ( 1 - i z ) = sqrt ( ( 1 +i z ) / ( 1 - i z ) ) under more limited conditions. (Contributed by Mario Carneiro, 4-Apr-2015)

Ref Expression
Assertion atanlogsub AdomarctanA0log1+iAlog1iAranlog

Proof

Step Hyp Ref Expression
1 ax-1cn 1
2 ax-icn i
3 atandm2 AdomarctanA1iA01+iA0
4 3 simp1bi AdomarctanA
5 mulcl iAiA
6 2 4 5 sylancr AdomarctaniA
7 addcl 1iA1+iA
8 1 6 7 sylancr Adomarctan1+iA
9 3 simp3bi Adomarctan1+iA0
10 8 9 logcld Adomarctanlog1+iA
11 subcl 1iA1iA
12 1 6 11 sylancr Adomarctan1iA
13 3 simp2bi Adomarctan1iA0
14 12 13 logcld Adomarctanlog1iA
15 10 14 subcld Adomarctanlog1+iAlog1iA
16 15 adantr AdomarctanA0log1+iAlog1iA
17 4 recld AdomarctanA
18 0re 0
19 lttri2 A0A0A<00<A
20 17 18 19 sylancl AdomarctanA0A<00<A
21 20 biimpa AdomarctanA0A<00<A
22 15 imnegd Adomarctanlog1+iAlog1iA=log1+iAlog1iA
23 10 14 negsubdi2d Adomarctanlog1+iAlog1iA=log1iAlog1+iA
24 mulneg2 iAiA=iA
25 2 4 24 sylancr AdomarctaniA=iA
26 25 oveq2d Adomarctan1+iA=1+iA
27 negsub 1iA1+iA=1iA
28 1 6 27 sylancr Adomarctan1+iA=1iA
29 26 28 eqtrd Adomarctan1+iA=1iA
30 29 fveq2d Adomarctanlog1+iA=log1iA
31 25 oveq2d Adomarctan1iA=1iA
32 subneg 1iA1iA=1+iA
33 1 6 32 sylancr Adomarctan1iA=1+iA
34 31 33 eqtrd Adomarctan1iA=1+iA
35 34 fveq2d Adomarctanlog1iA=log1+iA
36 30 35 oveq12d Adomarctanlog1+iAlog1iA=log1iAlog1+iA
37 23 36 eqtr4d Adomarctanlog1+iAlog1iA=log1+iAlog1iA
38 37 fveq2d Adomarctanlog1+iAlog1iA=log1+iAlog1iA
39 22 38 eqtr3d Adomarctanlog1+iAlog1iA=log1+iAlog1iA
40 39 adantr AdomarctanA<0log1+iAlog1iA=log1+iAlog1iA
41 atandmneg AdomarctanAdomarctan
42 17 lt0neg1d AdomarctanA<00<A
43 42 biimpa AdomarctanA<00<A
44 4 adantr AdomarctanA<0A
45 44 renegd AdomarctanA<0A=A
46 43 45 breqtrrd AdomarctanA<00<A
47 atanlogsublem Adomarctan0<Alog1+iAlog1iAππ
48 41 46 47 syl2an2r AdomarctanA<0log1+iAlog1iAππ
49 picn π
50 49 negnegi π=π
51 50 oveq2i ππ=ππ
52 48 51 eleqtrrdi AdomarctanA<0log1+iAlog1iAππ
53 40 52 eqeltrd AdomarctanA<0log1+iAlog1iAππ
54 pire π
55 54 renegcli π
56 15 adantr AdomarctanA<0log1+iAlog1iA
57 56 imcld AdomarctanA<0log1+iAlog1iA
58 iooneg ππlog1+iAlog1iAlog1+iAlog1iAππlog1+iAlog1iAππ
59 55 54 57 58 mp3an12i AdomarctanA<0log1+iAlog1iAππlog1+iAlog1iAππ
60 53 59 mpbird AdomarctanA<0log1+iAlog1iAππ
61 atanlogsublem Adomarctan0<Alog1+iAlog1iAππ
62 60 61 jaodan AdomarctanA<00<Alog1+iAlog1iAππ
63 21 62 syldan AdomarctanA0log1+iAlog1iAππ
64 eliooord log1+iAlog1iAπππ<log1+iAlog1iAlog1+iAlog1iA<π
65 63 64 syl AdomarctanA0π<log1+iAlog1iAlog1+iAlog1iA<π
66 65 simpld AdomarctanA0π<log1+iAlog1iA
67 65 simprd AdomarctanA0log1+iAlog1iA<π
68 16 imcld AdomarctanA0log1+iAlog1iA
69 ltle log1+iAlog1iAπlog1+iAlog1iA<πlog1+iAlog1iAπ
70 68 54 69 sylancl AdomarctanA0log1+iAlog1iA<πlog1+iAlog1iAπ
71 67 70 mpd AdomarctanA0log1+iAlog1iAπ
72 ellogrn log1+iAlog1iAranloglog1+iAlog1iAπ<log1+iAlog1iAlog1+iAlog1iAπ
73 16 66 71 72 syl3anbrc AdomarctanA0log1+iAlog1iAranlog