Metamath Proof Explorer


Theorem axmulf

Description: Multiplication is an operation on the complex numbers. This theorem can be used as an alternate axiom for complex numbers in place of the less specific axmulcl . This construction-dependent theorem should not be referenced directly; instead, use ax-mulf . (Contributed by NM, 8-Feb-2005) (New usage is discouraged.)

Ref Expression
Assertion axmulf ×:×

Proof

Step Hyp Ref Expression
1 moeq *zz=w𝑹u+𝑹-1𝑹𝑹v𝑹fv𝑹u+𝑹w𝑹f
2 1 mosubop *zufy=ufz=w𝑹u+𝑹-1𝑹𝑹v𝑹fv𝑹u+𝑹w𝑹f
3 2 mosubop *zwvx=wvufy=ufz=w𝑹u+𝑹-1𝑹𝑹v𝑹fv𝑹u+𝑹w𝑹f
4 anass x=wvy=ufz=w𝑹u+𝑹-1𝑹𝑹v𝑹fv𝑹u+𝑹w𝑹fx=wvy=ufz=w𝑹u+𝑹-1𝑹𝑹v𝑹fv𝑹u+𝑹w𝑹f
5 4 2exbii ufx=wvy=ufz=w𝑹u+𝑹-1𝑹𝑹v𝑹fv𝑹u+𝑹w𝑹fufx=wvy=ufz=w𝑹u+𝑹-1𝑹𝑹v𝑹fv𝑹u+𝑹w𝑹f
6 19.42vv ufx=wvy=ufz=w𝑹u+𝑹-1𝑹𝑹v𝑹fv𝑹u+𝑹w𝑹fx=wvufy=ufz=w𝑹u+𝑹-1𝑹𝑹v𝑹fv𝑹u+𝑹w𝑹f
7 5 6 bitri ufx=wvy=ufz=w𝑹u+𝑹-1𝑹𝑹v𝑹fv𝑹u+𝑹w𝑹fx=wvufy=ufz=w𝑹u+𝑹-1𝑹𝑹v𝑹fv𝑹u+𝑹w𝑹f
8 7 2exbii wvufx=wvy=ufz=w𝑹u+𝑹-1𝑹𝑹v𝑹fv𝑹u+𝑹w𝑹fwvx=wvufy=ufz=w𝑹u+𝑹-1𝑹𝑹v𝑹fv𝑹u+𝑹w𝑹f
9 8 mobii *zwvufx=wvy=ufz=w𝑹u+𝑹-1𝑹𝑹v𝑹fv𝑹u+𝑹w𝑹f*zwvx=wvufy=ufz=w𝑹u+𝑹-1𝑹𝑹v𝑹fv𝑹u+𝑹w𝑹f
10 3 9 mpbir *zwvufx=wvy=ufz=w𝑹u+𝑹-1𝑹𝑹v𝑹fv𝑹u+𝑹w𝑹f
11 10 moani *zxywvufx=wvy=ufz=w𝑹u+𝑹-1𝑹𝑹v𝑹fv𝑹u+𝑹w𝑹f
12 11 funoprab Funxyz|xywvufx=wvy=ufz=w𝑹u+𝑹-1𝑹𝑹v𝑹fv𝑹u+𝑹w𝑹f
13 df-mul ×=xyz|xywvufx=wvy=ufz=w𝑹u+𝑹-1𝑹𝑹v𝑹fv𝑹u+𝑹w𝑹f
14 13 funeqi Fun×Funxyz|xywvufx=wvy=ufz=w𝑹u+𝑹-1𝑹𝑹v𝑹fv𝑹u+𝑹w𝑹f
15 12 14 mpbir Fun×
16 13 dmeqi dom×=domxyz|xywvufx=wvy=ufz=w𝑹u+𝑹-1𝑹𝑹v𝑹fv𝑹u+𝑹w𝑹f
17 dmoprabss domxyz|xywvufx=wvy=ufz=w𝑹u+𝑹-1𝑹𝑹v𝑹fv𝑹u+𝑹w𝑹f×
18 16 17 eqsstri dom××
19 0ncn ¬
20 df-c =𝑹×𝑹
21 oveq1 zw=xzwvu=xvu
22 21 eleq1d zw=xzwvu𝑹×𝑹xvu𝑹×𝑹
23 oveq2 vu=yxvu=xy
24 23 eleq1d vu=yxvu𝑹×𝑹xy𝑹×𝑹
25 mulcnsr z𝑹w𝑹v𝑹u𝑹zwvu=z𝑹v+𝑹-1𝑹𝑹w𝑹uw𝑹v+𝑹z𝑹u
26 mulclsr z𝑹v𝑹z𝑹v𝑹
27 m1r -1𝑹𝑹
28 mulclsr w𝑹u𝑹w𝑹u𝑹
29 mulclsr -1𝑹𝑹w𝑹u𝑹-1𝑹𝑹w𝑹u𝑹
30 27 28 29 sylancr w𝑹u𝑹-1𝑹𝑹w𝑹u𝑹
31 addclsr z𝑹v𝑹-1𝑹𝑹w𝑹u𝑹z𝑹v+𝑹-1𝑹𝑹w𝑹u𝑹
32 26 30 31 syl2an z𝑹v𝑹w𝑹u𝑹z𝑹v+𝑹-1𝑹𝑹w𝑹u𝑹
33 32 an4s z𝑹w𝑹v𝑹u𝑹z𝑹v+𝑹-1𝑹𝑹w𝑹u𝑹
34 mulclsr w𝑹v𝑹w𝑹v𝑹
35 mulclsr z𝑹u𝑹z𝑹u𝑹
36 addclsr w𝑹v𝑹z𝑹u𝑹w𝑹v+𝑹z𝑹u𝑹
37 34 35 36 syl2anr z𝑹u𝑹w𝑹v𝑹w𝑹v+𝑹z𝑹u𝑹
38 37 an42s z𝑹w𝑹v𝑹u𝑹w𝑹v+𝑹z𝑹u𝑹
39 33 38 opelxpd z𝑹w𝑹v𝑹u𝑹z𝑹v+𝑹-1𝑹𝑹w𝑹uw𝑹v+𝑹z𝑹u𝑹×𝑹
40 25 39 eqeltrd z𝑹w𝑹v𝑹u𝑹zwvu𝑹×𝑹
41 20 22 24 40 2optocl xyxy𝑹×𝑹
42 41 20 eleqtrrdi xyxy
43 19 42 oprssdm ×dom×
44 18 43 eqssi dom×=×
45 df-fn ×Fn×Fun×dom×=×
46 15 44 45 mpbir2an ×Fn×
47 42 rgen2 xyxy
48 ffnov ×:××Fn×xyxy
49 46 47 48 mpbir2an ×:×