Description: Multiplication is an operation on the complex numbers. This theorem can be used as an alternate axiom for complex numbers in place of the less specific axmulcl . This construction-dependent theorem should not be referenced directly; instead, use ax-mulf . (Contributed by NM, 8-Feb-2005) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Assertion | axmulf | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | moeq | |
|
2 | 1 | mosubop | |
3 | 2 | mosubop | |
4 | anass | |
|
5 | 4 | 2exbii | |
6 | 19.42vv | |
|
7 | 5 6 | bitri | |
8 | 7 | 2exbii | |
9 | 8 | mobii | |
10 | 3 9 | mpbir | |
11 | 10 | moani | |
12 | 11 | funoprab | |
13 | df-mul | |
|
14 | 13 | funeqi | |
15 | 12 14 | mpbir | |
16 | 13 | dmeqi | |
17 | dmoprabss | |
|
18 | 16 17 | eqsstri | |
19 | 0ncn | |
|
20 | df-c | |
|
21 | oveq1 | |
|
22 | 21 | eleq1d | |
23 | oveq2 | |
|
24 | 23 | eleq1d | |
25 | mulcnsr | |
|
26 | mulclsr | |
|
27 | m1r | |
|
28 | mulclsr | |
|
29 | mulclsr | |
|
30 | 27 28 29 | sylancr | |
31 | addclsr | |
|
32 | 26 30 31 | syl2an | |
33 | 32 | an4s | |
34 | mulclsr | |
|
35 | mulclsr | |
|
36 | addclsr | |
|
37 | 34 35 36 | syl2anr | |
38 | 37 | an42s | |
39 | 33 38 | opelxpd | |
40 | 25 39 | eqeltrd | |
41 | 20 22 24 40 | 2optocl | |
42 | 41 20 | eleqtrrdi | |
43 | 19 42 | oprssdm | |
44 | 18 43 | eqssi | |
45 | df-fn | |
|
46 | 15 44 45 | mpbir2an | |
47 | 42 | rgen2 | |
48 | ffnov | |
|
49 | 46 47 48 | mpbir2an | |