Metamath Proof Explorer


Theorem axsegconlem1

Description: Lemma for axsegcon . Handle the degenerate case. (Contributed by Scott Fenton, 7-Jun-2013)

Ref Expression
Assertion axsegconlem1 A=BA𝔼NB𝔼NC𝔼ND𝔼Nx𝔼Nt01i1NBi=1tAi+txii=1NBixi2=i=1NCiDi2

Proof

Step Hyp Ref Expression
1 fveere B𝔼Nk1NBk
2 1 3ad2antl1 B𝔼NC𝔼ND𝔼Nk1NBk
3 fveere C𝔼Nk1NCk
4 3 3ad2antl2 B𝔼NC𝔼ND𝔼Nk1NCk
5 fveere D𝔼Nk1NDk
6 5 3ad2antl3 B𝔼NC𝔼ND𝔼Nk1NDk
7 4 6 resubcld B𝔼NC𝔼ND𝔼Nk1NCkDk
8 2 7 resubcld B𝔼NC𝔼ND𝔼Nk1NBkCkDk
9 8 ralrimiva B𝔼NC𝔼ND𝔼Nk1NBkCkDk
10 eleenn B𝔼NN
11 mptelee Nk1NBkCkDk𝔼Nk1NBkCkDk
12 10 11 syl B𝔼Nk1NBkCkDk𝔼Nk1NBkCkDk
13 12 3ad2ant1 B𝔼NC𝔼ND𝔼Nk1NBkCkDk𝔼Nk1NBkCkDk
14 9 13 mpbird B𝔼NC𝔼ND𝔼Nk1NBkCkDk𝔼N
15 fveecn B𝔼Ni1NBi
16 15 3ad2antl1 B𝔼NC𝔼ND𝔼Ni1NBi
17 fveecn C𝔼Ni1NCi
18 17 3ad2antl2 B𝔼NC𝔼ND𝔼Ni1NCi
19 fveecn D𝔼Ni1NDi
20 19 3ad2antl3 B𝔼NC𝔼ND𝔼Ni1NDi
21 1m0e1 10=1
22 21 oveq1i 10Bi=1Bi
23 mullid Bi1Bi=Bi
24 23 3ad2ant1 BiCiDi1Bi=Bi
25 22 24 eqtrid BiCiDi10Bi=Bi
26 subcl CiDiCiDi
27 subcl BiCiDiBiCiDi
28 26 27 sylan2 BiCiDiBiCiDi
29 28 3impb BiCiDiBiCiDi
30 29 mul02d BiCiDi0BiCiDi=0
31 25 30 oveq12d BiCiDi10Bi+0BiCiDi=Bi+0
32 addrid BiBi+0=Bi
33 32 3ad2ant1 BiCiDiBi+0=Bi
34 31 33 eqtr2d BiCiDiBi=10Bi+0BiCiDi
35 16 18 20 34 syl3anc B𝔼NC𝔼ND𝔼Ni1NBi=10Bi+0BiCiDi
36 35 ralrimiva B𝔼NC𝔼ND𝔼Ni1NBi=10Bi+0BiCiDi
37 18 20 subcld B𝔼NC𝔼ND𝔼Ni1NCiDi
38 16 37 nncand B𝔼NC𝔼ND𝔼Ni1NBiBiCiDi=CiDi
39 38 oveq1d B𝔼NC𝔼ND𝔼Ni1NBiBiCiDi2=CiDi2
40 39 sumeq2dv B𝔼NC𝔼ND𝔼Ni=1NBiBiCiDi2=i=1NCiDi2
41 0elunit 001
42 fveq1 x=k1NBkCkDkxi=k1NBkCkDki
43 fveq2 k=iBk=Bi
44 fveq2 k=iCk=Ci
45 fveq2 k=iDk=Di
46 44 45 oveq12d k=iCkDk=CiDi
47 43 46 oveq12d k=iBkCkDk=BiCiDi
48 eqid k1NBkCkDk=k1NBkCkDk
49 ovex BiCiDiV
50 47 48 49 fvmpt i1Nk1NBkCkDki=BiCiDi
51 42 50 sylan9eq x=k1NBkCkDki1Nxi=BiCiDi
52 51 oveq2d x=k1NBkCkDki1Ntxi=tBiCiDi
53 52 oveq2d x=k1NBkCkDki1N1tBi+txi=1tBi+tBiCiDi
54 53 eqeq2d x=k1NBkCkDki1NBi=1tBi+txiBi=1tBi+tBiCiDi
55 54 ralbidva x=k1NBkCkDki1NBi=1tBi+txii1NBi=1tBi+tBiCiDi
56 51 oveq2d x=k1NBkCkDki1NBixi=BiBiCiDi
57 56 oveq1d x=k1NBkCkDki1NBixi2=BiBiCiDi2
58 57 sumeq2dv x=k1NBkCkDki=1NBixi2=i=1NBiBiCiDi2
59 58 eqeq1d x=k1NBkCkDki=1NBixi2=i=1NCiDi2i=1NBiBiCiDi2=i=1NCiDi2
60 55 59 anbi12d x=k1NBkCkDki1NBi=1tBi+txii=1NBixi2=i=1NCiDi2i1NBi=1tBi+tBiCiDii=1NBiBiCiDi2=i=1NCiDi2
61 oveq2 t=01t=10
62 61 oveq1d t=01tBi=10Bi
63 oveq1 t=0tBiCiDi=0BiCiDi
64 62 63 oveq12d t=01tBi+tBiCiDi=10Bi+0BiCiDi
65 64 eqeq2d t=0Bi=1tBi+tBiCiDiBi=10Bi+0BiCiDi
66 65 ralbidv t=0i1NBi=1tBi+tBiCiDii1NBi=10Bi+0BiCiDi
67 66 anbi1d t=0i1NBi=1tBi+tBiCiDii=1NBiBiCiDi2=i=1NCiDi2i1NBi=10Bi+0BiCiDii=1NBiBiCiDi2=i=1NCiDi2
68 60 67 rspc2ev k1NBkCkDk𝔼N001i1NBi=10Bi+0BiCiDii=1NBiBiCiDi2=i=1NCiDi2x𝔼Nt01i1NBi=1tBi+txii=1NBixi2=i=1NCiDi2
69 41 68 mp3an2 k1NBkCkDk𝔼Ni1NBi=10Bi+0BiCiDii=1NBiBiCiDi2=i=1NCiDi2x𝔼Nt01i1NBi=1tBi+txii=1NBixi2=i=1NCiDi2
70 14 36 40 69 syl12anc B𝔼NC𝔼ND𝔼Nx𝔼Nt01i1NBi=1tBi+txii=1NBixi2=i=1NCiDi2
71 70 3expb B𝔼NC𝔼ND𝔼Nx𝔼Nt01i1NBi=1tBi+txii=1NBixi2=i=1NCiDi2
72 71 adantll A𝔼NB𝔼NC𝔼ND𝔼Nx𝔼Nt01i1NBi=1tBi+txii=1NBixi2=i=1NCiDi2
73 fveq1 A=BAi=Bi
74 73 oveq2d A=B1tAi=1tBi
75 74 oveq1d A=B1tAi+txi=1tBi+txi
76 75 eqeq2d A=BBi=1tAi+txiBi=1tBi+txi
77 76 ralbidv A=Bi1NBi=1tAi+txii1NBi=1tBi+txi
78 77 anbi1d A=Bi1NBi=1tAi+txii=1NBixi2=i=1NCiDi2i1NBi=1tBi+txii=1NBixi2=i=1NCiDi2
79 78 2rexbidv A=Bx𝔼Nt01i1NBi=1tAi+txii=1NBixi2=i=1NCiDi2x𝔼Nt01i1NBi=1tBi+txii=1NBixi2=i=1NCiDi2
80 72 79 imbitrrid A=BA𝔼NB𝔼NC𝔼ND𝔼Nx𝔼Nt01i1NBi=1tAi+txii=1NBixi2=i=1NCiDi2
81 80 imp A=BA𝔼NB𝔼NC𝔼ND𝔼Nx𝔼Nt01i1NBi=1tAi+txii=1NBixi2=i=1NCiDi2