Description: Given a finite number of terms of the form ( (om ^o ( An ) ) .o ( Mn ) ) with distinct exponents, we may order them from largest to smallest and find the sum is less than ( om ^o X ) when ( An ) is less than X and ( Mn ) is less than _om . Lemma 5.2 of Schloeder p. 15. (Contributed by RP, 31-Jan-2025)
Ref | Expression | ||
---|---|---|---|
Hypotheses | cantnfub.0 | |
|
cantnfub.n | |
||
cantnfub.a | |
||
cantnfub.m | |
||
cantnfub.f | |
||
Assertion | cantnfub | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cantnfub.0 | |
|
2 | cantnfub.n | |
|
3 | cantnfub.a | |
|
4 | cantnfub.m | |
|
5 | cantnfub.f | |
|
6 | 4 | ad2antrr | |
7 | 3 | ad2antrr | |
8 | f1f1orn | |
|
9 | 7 8 | syl | |
10 | f1ocnvdm | |
|
11 | 9 10 | sylancom | |
12 | 6 11 | ffvelcdmd | |
13 | peano1 | |
|
14 | 13 | a1i | |
15 | 12 14 | ifclda | |
16 | 15 5 | fmptd | |
17 | f1fn | |
|
18 | 3 17 | syl | |
19 | nnon | |
|
20 | onfin | |
|
21 | 2 19 20 | 3syl | |
22 | 2 21 | mpbird | |
23 | 18 22 | jca | |
24 | fnfi | |
|
25 | rnfi | |
|
26 | 23 24 25 | 3syl | |
27 | eldifi | |
|
28 | 27 | adantl | |
29 | eleq1w | |
|
30 | 2fveq3 | |
|
31 | 29 30 | ifbieq1d | |
32 | fvex | |
|
33 | 0ex | |
|
34 | 32 33 | ifex | |
35 | 31 5 34 | fvmpt | |
36 | 28 35 | syl | |
37 | eldifn | |
|
38 | 37 | adantl | |
39 | 38 | iffalsed | |
40 | 36 39 | eqtrd | |
41 | 16 40 | suppss | |
42 | 26 41 | ssfid | |
43 | 16 | ffund | |
44 | omelon | |
|
45 | 44 | a1i | |
46 | 45 1 | elmapd | |
47 | 16 46 | mpbird | |
48 | 13 | a1i | |
49 | funisfsupp | |
|
50 | 43 47 48 49 | syl3anc | |
51 | 42 50 | mpbird | |
52 | eqid | |
|
53 | 52 45 1 | cantnfs | |
54 | 16 51 53 | mpbir2and | |
55 | 52 45 1 | cantnff | |
56 | 55 54 | ffvelcdmd | |
57 | 54 56 | jca | |