Metamath Proof Explorer


Theorem cantnfub

Description: Given a finite number of terms of the form ( (om ^o ( An ) ) .o ( Mn ) ) with distinct exponents, we may order them from largest to smallest and find the sum is less than ( om ^o X ) when ( An ) is less than X and ( Mn ) is less than _om . Lemma 5.2 of Schloeder p. 15. (Contributed by RP, 31-Jan-2025)

Ref Expression
Hypotheses cantnfub.0 φXOn
cantnfub.n φNω
cantnfub.a φA:N1-1X
cantnfub.m φM:Nω
cantnfub.f F=xXifxranAMA-1x
Assertion cantnfub φFdomωCNFXωCNFXFω𝑜X

Proof

Step Hyp Ref Expression
1 cantnfub.0 φXOn
2 cantnfub.n φNω
3 cantnfub.a φA:N1-1X
4 cantnfub.m φM:Nω
5 cantnfub.f F=xXifxranAMA-1x
6 4 ad2antrr φxXxranAM:Nω
7 3 ad2antrr φxXxranAA:N1-1X
8 f1f1orn A:N1-1XA:N1-1 ontoranA
9 7 8 syl φxXxranAA:N1-1 ontoranA
10 f1ocnvdm A:N1-1 ontoranAxranAA-1xN
11 9 10 sylancom φxXxranAA-1xN
12 6 11 ffvelcdmd φxXxranAMA-1xω
13 peano1 ω
14 13 a1i φxX¬xranAω
15 12 14 ifclda φxXifxranAMA-1xω
16 15 5 fmptd φF:Xω
17 f1fn A:N1-1XAFnN
18 3 17 syl φAFnN
19 nnon NωNOn
20 onfin NOnNFinNω
21 2 19 20 3syl φNFinNω
22 2 21 mpbird φNFin
23 18 22 jca φAFnNNFin
24 fnfi AFnNNFinAFin
25 rnfi AFinranAFin
26 23 24 25 3syl φranAFin
27 eldifi yXranAyX
28 27 adantl φyXranAyX
29 eleq1w x=yxranAyranA
30 2fveq3 x=yMA-1x=MA-1y
31 29 30 ifbieq1d x=yifxranAMA-1x=ifyranAMA-1y
32 fvex MA-1yV
33 0ex V
34 32 33 ifex ifyranAMA-1yV
35 31 5 34 fvmpt yXFy=ifyranAMA-1y
36 28 35 syl φyXranAFy=ifyranAMA-1y
37 eldifn yXranA¬yranA
38 37 adantl φyXranA¬yranA
39 38 iffalsed φyXranAifyranAMA-1y=
40 36 39 eqtrd φyXranAFy=
41 16 40 suppss φFsuppranA
42 26 41 ssfid φFsuppFin
43 16 ffund φFunF
44 omelon ωOn
45 44 a1i φωOn
46 45 1 elmapd φFωXF:Xω
47 16 46 mpbird φFωX
48 13 a1i φω
49 funisfsupp FunFFωXωfinSuppFFsuppFin
50 43 47 48 49 syl3anc φfinSuppFFsuppFin
51 42 50 mpbird φfinSuppF
52 eqid domωCNFX=domωCNFX
53 52 45 1 cantnfs φFdomωCNFXF:XωfinSuppF
54 16 51 53 mpbir2and φFdomωCNFX
55 52 45 1 cantnff φωCNFX:domωCNFXω𝑜X
56 55 54 ffvelcdmd φωCNFXFω𝑜X
57 54 56 jca φFdomωCNFXωCNFXFω𝑜X