Metamath Proof Explorer


Theorem cdj3lem1

Description: A property of " A and B are completely disjoint subspaces." Part of Lemma 5 of Holland p. 1520. (Contributed by NM, 23-May-2005) (New usage is discouraged.)

Ref Expression
Hypotheses cdj1.1 AS
cdj1.2 BS
Assertion cdj3lem1 x0<xyAzBnormy+normzxnormy+zAB=0

Proof

Step Hyp Ref Expression
1 cdj1.1 AS
2 cdj1.2 BS
3 elin wABwAwB
4 neg1cn 1
5 shmulcl BS1wB-1wB
6 2 4 5 mp3an12 wB-1wB
7 6 anim2i wAwBwA-1wB
8 3 7 sylbi wABwA-1wB
9 fveq2 y=wnormy=normw
10 9 oveq1d y=wnormy+normz=normw+normz
11 fvoveq1 y=wnormy+z=normw+z
12 11 oveq2d y=wxnormy+z=xnormw+z
13 10 12 breq12d y=wnormy+normzxnormy+znormw+normzxnormw+z
14 fveq2 z=-1wnormz=norm-1w
15 14 oveq2d z=-1wnormw+normz=normw+norm-1w
16 oveq2 z=-1ww+z=w+-1w
17 16 fveq2d z=-1wnormw+z=normw+-1w
18 17 oveq2d z=-1wxnormw+z=xnormw+-1w
19 15 18 breq12d z=-1wnormw+normzxnormw+znormw+norm-1wxnormw+-1w
20 13 19 rspc2v wA-1wByAzBnormy+normzxnormy+znormw+norm-1wxnormw+-1w
21 8 20 syl wAByAzBnormy+normzxnormy+znormw+norm-1wxnormw+-1w
22 21 adantl xwAByAzBnormy+normzxnormy+znormw+norm-1wxnormw+-1w
23 1 2 shincli ABS
24 23 sheli wABw
25 normneg wnorm-1w=normw
26 25 oveq2d wnormw+norm-1w=normw+normw
27 normcl wnormw
28 27 recnd wnormw
29 28 2timesd w2normw=normw+normw
30 26 29 eqtr4d wnormw+norm-1w=2normw
31 30 adantl xwnormw+norm-1w=2normw
32 hvnegid ww+-1w=0
33 32 fveq2d wnormw+-1w=norm0
34 norm0 norm0=0
35 33 34 eqtrdi wnormw+-1w=0
36 35 oveq2d wxnormw+-1w=x0
37 recn xx
38 37 mul01d xx0=0
39 36 38 sylan9eqr xwxnormw+-1w=0
40 2t0e0 20=0
41 39 40 eqtr4di xwxnormw+-1w=20
42 31 41 breq12d xwnormw+norm-1wxnormw+-1w2normw20
43 0re 0
44 letri3 normw0normw=0normw00normw
45 27 43 44 sylancl wnormw=0normw00normw
46 normge0 w0normw
47 46 biantrud wnormw0normw00normw
48 2re 2
49 2pos 0<2
50 48 49 pm3.2i 20<2
51 lemul2 normw020<2normw02normw20
52 43 50 51 mp3an23 normwnormw02normw20
53 27 52 syl wnormw02normw20
54 45 47 53 3bitr2rd w2normw20normw=0
55 norm-i wnormw=0w=0
56 54 55 bitrd w2normw20w=0
57 56 adantl xw2normw20w=0
58 42 57 bitrd xwnormw+norm-1wxnormw+-1ww=0
59 24 58 sylan2 xwABnormw+norm-1wxnormw+-1ww=0
60 22 59 sylibd xwAByAzBnormy+normzxnormy+zw=0
61 60 impancom xyAzBnormy+normzxnormy+zwABw=0
62 elch0 w0w=0
63 61 62 syl6ibr xyAzBnormy+normzxnormy+zwABw0
64 63 ssrdv xyAzBnormy+normzxnormy+zAB0
65 64 ex xyAzBnormy+normzxnormy+zAB0
66 shle0 ABSAB0AB=0
67 23 66 ax-mp AB0AB=0
68 65 67 imbitrdi xyAzBnormy+normzxnormy+zAB=0
69 68 adantld x0<xyAzBnormy+normzxnormy+zAB=0
70 69 rexlimiv x0<xyAzBnormy+normzxnormy+zAB=0