| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cdlemi.b |
|
| 2 |
|
cdlemi.l |
|
| 3 |
|
cdlemi.j |
|
| 4 |
|
cdlemi.m |
|
| 5 |
|
cdlemi.a |
|
| 6 |
|
cdlemi.h |
|
| 7 |
|
cdlemi.t |
|
| 8 |
|
cdlemi.r |
|
| 9 |
|
cdlemi.e |
|
| 10 |
|
simp1l |
|
| 11 |
10
|
hllatd |
|
| 12 |
|
simp1 |
|
| 13 |
|
simp2l |
|
| 14 |
|
simp2r |
|
| 15 |
6 7 9
|
tendocl |
|
| 16 |
12 13 14 15
|
syl3anc |
|
| 17 |
|
simp3l |
|
| 18 |
1 5
|
atbase |
|
| 19 |
17 18
|
syl |
|
| 20 |
1 6 7
|
ltrncl |
|
| 21 |
12 16 19 20
|
syl3anc |
|
| 22 |
1 6 7 8
|
trlcl |
|
| 23 |
12 16 22
|
syl2anc |
|
| 24 |
1 3
|
latjcl |
|
| 25 |
11 19 23 24
|
syl3anc |
|
| 26 |
1 6 7 8
|
trlcl |
|
| 27 |
12 14 26
|
syl2anc |
|
| 28 |
1 3
|
latjcl |
|
| 29 |
11 19 27 28
|
syl3anc |
|
| 30 |
1 2 3
|
latlej2 |
|
| 31 |
11 19 21 30
|
syl3anc |
|
| 32 |
2 3 4 5 6 7 8
|
trlval2 |
|
| 33 |
16 32
|
syld3an2 |
|
| 34 |
33
|
oveq2d |
|
| 35 |
1 3
|
latjcl |
|
| 36 |
11 19 21 35
|
syl3anc |
|
| 37 |
|
simp1r |
|
| 38 |
1 6
|
lhpbase |
|
| 39 |
37 38
|
syl |
|
| 40 |
1 2 3
|
latlej1 |
|
| 41 |
11 19 21 40
|
syl3anc |
|
| 42 |
1 2 3 4 5
|
atmod3i1 |
|
| 43 |
10 17 36 39 41 42
|
syl131anc |
|
| 44 |
|
eqid |
|
| 45 |
2 3 44 5 6
|
lhpjat2 |
|
| 46 |
45
|
3adant2 |
|
| 47 |
46
|
oveq2d |
|
| 48 |
|
hlol |
|
| 49 |
10 48
|
syl |
|
| 50 |
1 4 44
|
olm11 |
|
| 51 |
49 36 50
|
syl2anc |
|
| 52 |
47 51
|
eqtrd |
|
| 53 |
34 43 52
|
3eqtrd |
|
| 54 |
31 53
|
breqtrrd |
|
| 55 |
2 6 7 8 9
|
tendotp |
|
| 56 |
12 13 14 55
|
syl3anc |
|
| 57 |
1 2 3
|
latjlej2 |
|
| 58 |
11 23 27 19 57
|
syl13anc |
|
| 59 |
56 58
|
mpd |
|
| 60 |
1 2 11 21 25 29 54 59
|
lattrd |
|