Metamath Proof Explorer


Theorem cfflb

Description: If there is a cofinal map from B to A , then B is at least ( cfA ) . This theorem and cff1 motivate the picture of ( cfA ) as the greatest lower bound of the domain of cofinal maps into A . (Contributed by Mario Carneiro, 28-Feb-2013)

Ref Expression
Assertion cfflb AOnBOnff:BAzAwBzfwcfAB

Proof

Step Hyp Ref Expression
1 frn f:BAranfA
2 1 adantr f:BAzAwBzfwranfA
3 ffn f:BAfFnB
4 fnfvelrn fFnBwBfwranf
5 3 4 sylan f:BAwBfwranf
6 sseq2 s=fwzszfw
7 6 rspcev fwranfzfwsranfzs
8 5 7 sylan f:BAwBzfwsranfzs
9 8 rexlimdva2 f:BAwBzfwsranfzs
10 9 ralimdv f:BAzAwBzfwzAsranfzs
11 10 imp f:BAzAwBzfwzAsranfzs
12 2 11 jca f:BAzAwBzfwranfAzAsranfzs
13 fvex cardranfV
14 cfval AOncfA=x|yx=cardyyAzAsyzs
15 14 adantr AOnBOncfA=x|yx=cardyyAzAsyzs
16 15 3ad2ant2 x=cardranfAOnBOnranfAzAsranfzscfA=x|yx=cardyyAzAsyzs
17 vex fV
18 17 rnex ranfV
19 fveq2 y=ranfcardy=cardranf
20 19 eqeq2d y=ranfx=cardyx=cardranf
21 sseq1 y=ranfyAranfA
22 rexeq y=ranfsyzssranfzs
23 22 ralbidv y=ranfzAsyzszAsranfzs
24 21 23 anbi12d y=ranfyAzAsyzsranfAzAsranfzs
25 20 24 anbi12d y=ranfx=cardyyAzAsyzsx=cardranfranfAzAsranfzs
26 18 25 spcev x=cardranfranfAzAsranfzsyx=cardyyAzAsyzs
27 abid xx|yx=cardyyAzAsyzsyx=cardyyAzAsyzs
28 26 27 sylibr x=cardranfranfAzAsranfzsxx|yx=cardyyAzAsyzs
29 intss1 xx|yx=cardyyAzAsyzsx|yx=cardyyAzAsyzsx
30 28 29 syl x=cardranfranfAzAsranfzsx|yx=cardyyAzAsyzsx
31 30 3adant2 x=cardranfAOnBOnranfAzAsranfzsx|yx=cardyyAzAsyzsx
32 16 31 eqsstrd x=cardranfAOnBOnranfAzAsranfzscfAx
33 32 3expib x=cardranfAOnBOnranfAzAsranfzscfAx
34 sseq2 x=cardranfcfAxcfAcardranf
35 33 34 sylibd x=cardranfAOnBOnranfAzAsranfzscfAcardranf
36 13 35 vtocle AOnBOnranfAzAsranfzscfAcardranf
37 12 36 sylan2 AOnBOnf:BAzAwBzfwcfAcardranf
38 cardidm cardcardranf=cardranf
39 onss AOnAOn
40 1 39 sylan9ssr AOnf:BAranfOn
41 40 3adant2 AOnBOnf:BAranfOn
42 onssnum ranfVranfOnranfdomcard
43 18 41 42 sylancr AOnBOnf:BAranfdomcard
44 cardid2 ranfdomcardcardranfranf
45 43 44 syl AOnBOnf:BAcardranfranf
46 onenon BOnBdomcard
47 dffn4 fFnBf:Bontoranf
48 3 47 sylib f:BAf:Bontoranf
49 fodomnum Bdomcardf:BontoranfranfB
50 46 48 49 syl2im BOnf:BAranfB
51 50 imp BOnf:BAranfB
52 51 3adant1 AOnBOnf:BAranfB
53 endomtr cardranfranfranfBcardranfB
54 45 52 53 syl2anc AOnBOnf:BAcardranfB
55 cardon cardranfOn
56 onenon cardranfOncardranfdomcard
57 55 56 ax-mp cardranfdomcard
58 carddom2 cardranfdomcardBdomcardcardcardranfcardBcardranfB
59 57 46 58 sylancr BOncardcardranfcardBcardranfB
60 59 3ad2ant2 AOnBOnf:BAcardcardranfcardBcardranfB
61 54 60 mpbird AOnBOnf:BAcardcardranfcardB
62 cardonle BOncardBB
63 62 3ad2ant2 AOnBOnf:BAcardBB
64 61 63 sstrd AOnBOnf:BAcardcardranfB
65 38 64 eqsstrrid AOnBOnf:BAcardranfB
66 65 3expa AOnBOnf:BAcardranfB
67 66 adantrr AOnBOnf:BAzAwBzfwcardranfB
68 37 67 sstrd AOnBOnf:BAzAwBzfwcfAB
69 68 ex AOnBOnf:BAzAwBzfwcfAB
70 69 exlimdv AOnBOnff:BAzAwBzfwcfAB