Description: If there is a cofinal map from B to A , then B is at least ( cfA ) . This theorem and cff1 motivate the picture of ( cfA ) as the greatest lower bound of the domain of cofinal maps into A . (Contributed by Mario Carneiro, 28-Feb-2013)
Ref | Expression | ||
---|---|---|---|
Assertion | cfflb | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | frn | |
|
2 | 1 | adantr | |
3 | ffn | |
|
4 | fnfvelrn | |
|
5 | 3 4 | sylan | |
6 | sseq2 | |
|
7 | 6 | rspcev | |
8 | 5 7 | sylan | |
9 | 8 | rexlimdva2 | |
10 | 9 | ralimdv | |
11 | 10 | imp | |
12 | 2 11 | jca | |
13 | fvex | |
|
14 | cfval | |
|
15 | 14 | adantr | |
16 | 15 | 3ad2ant2 | |
17 | vex | |
|
18 | 17 | rnex | |
19 | fveq2 | |
|
20 | 19 | eqeq2d | |
21 | sseq1 | |
|
22 | rexeq | |
|
23 | 22 | ralbidv | |
24 | 21 23 | anbi12d | |
25 | 20 24 | anbi12d | |
26 | 18 25 | spcev | |
27 | abid | |
|
28 | 26 27 | sylibr | |
29 | intss1 | |
|
30 | 28 29 | syl | |
31 | 30 | 3adant2 | |
32 | 16 31 | eqsstrd | |
33 | 32 | 3expib | |
34 | sseq2 | |
|
35 | 33 34 | sylibd | |
36 | 13 35 | vtocle | |
37 | 12 36 | sylan2 | |
38 | cardidm | |
|
39 | onss | |
|
40 | 1 39 | sylan9ssr | |
41 | 40 | 3adant2 | |
42 | onssnum | |
|
43 | 18 41 42 | sylancr | |
44 | cardid2 | |
|
45 | 43 44 | syl | |
46 | onenon | |
|
47 | dffn4 | |
|
48 | 3 47 | sylib | |
49 | fodomnum | |
|
50 | 46 48 49 | syl2im | |
51 | 50 | imp | |
52 | 51 | 3adant1 | |
53 | endomtr | |
|
54 | 45 52 53 | syl2anc | |
55 | cardon | |
|
56 | onenon | |
|
57 | 55 56 | ax-mp | |
58 | carddom2 | |
|
59 | 57 46 58 | sylancr | |
60 | 59 | 3ad2ant2 | |
61 | 54 60 | mpbird | |
62 | cardonle | |
|
63 | 62 | 3ad2ant2 | |
64 | 61 63 | sstrd | |
65 | 38 64 | eqsstrrid | |
66 | 65 | 3expa | |
67 | 66 | adantrr | |
68 | 37 67 | sstrd | |
69 | 68 | ex | |
70 | 69 | exlimdv | |