Database
BASIC REAL AND COMPLEX FUNCTIONS
Basic number theory
Number-theoretical functions
chtprm
Next ⟩
chtnprm
Metamath Proof Explorer
Ascii
Unicode
Theorem
chtprm
Description:
The Chebyshev function at a prime.
(Contributed by
Mario Carneiro
, 22-Sep-2014)
Ref
Expression
Assertion
chtprm
⊢
A
∈
ℤ
∧
A
+
1
∈
ℙ
→
θ
A
+
1
=
θ
A
+
log
A
+
1
Proof
Step
Hyp
Ref
Expression
1
peano2z
⊢
A
∈
ℤ
→
A
+
1
∈
ℤ
2
1
adantr
⊢
A
∈
ℤ
∧
A
+
1
∈
ℙ
→
A
+
1
∈
ℤ
3
zre
⊢
A
+
1
∈
ℤ
→
A
+
1
∈
ℝ
4
2
3
syl
⊢
A
∈
ℤ
∧
A
+
1
∈
ℙ
→
A
+
1
∈
ℝ
5
chtval
⊢
A
+
1
∈
ℝ
→
θ
A
+
1
=
∑
p
∈
0
A
+
1
∩
ℙ
log
p
6
4
5
syl
⊢
A
∈
ℤ
∧
A
+
1
∈
ℙ
→
θ
A
+
1
=
∑
p
∈
0
A
+
1
∩
ℙ
log
p
7
ppisval
⊢
A
+
1
∈
ℝ
→
0
A
+
1
∩
ℙ
=
2
…
A
+
1
∩
ℙ
8
4
7
syl
⊢
A
∈
ℤ
∧
A
+
1
∈
ℙ
→
0
A
+
1
∩
ℙ
=
2
…
A
+
1
∩
ℙ
9
flid
⊢
A
+
1
∈
ℤ
→
A
+
1
=
A
+
1
10
2
9
syl
⊢
A
∈
ℤ
∧
A
+
1
∈
ℙ
→
A
+
1
=
A
+
1
11
10
oveq2d
⊢
A
∈
ℤ
∧
A
+
1
∈
ℙ
→
2
…
A
+
1
=
2
…
A
+
1
12
11
ineq1d
⊢
A
∈
ℤ
∧
A
+
1
∈
ℙ
→
2
…
A
+
1
∩
ℙ
=
2
…
A
+
1
∩
ℙ
13
8
12
eqtrd
⊢
A
∈
ℤ
∧
A
+
1
∈
ℙ
→
0
A
+
1
∩
ℙ
=
2
…
A
+
1
∩
ℙ
14
13
sumeq1d
⊢
A
∈
ℤ
∧
A
+
1
∈
ℙ
→
∑
p
∈
0
A
+
1
∩
ℙ
log
p
=
∑
p
∈
2
…
A
+
1
∩
ℙ
log
p
15
6
14
eqtrd
⊢
A
∈
ℤ
∧
A
+
1
∈
ℙ
→
θ
A
+
1
=
∑
p
∈
2
…
A
+
1
∩
ℙ
log
p
16
zre
⊢
A
∈
ℤ
→
A
∈
ℝ
17
16
adantr
⊢
A
∈
ℤ
∧
A
+
1
∈
ℙ
→
A
∈
ℝ
18
17
ltp1d
⊢
A
∈
ℤ
∧
A
+
1
∈
ℙ
→
A
<
A
+
1
19
17
4
ltnled
⊢
A
∈
ℤ
∧
A
+
1
∈
ℙ
→
A
<
A
+
1
↔
¬
A
+
1
≤
A
20
18
19
mpbid
⊢
A
∈
ℤ
∧
A
+
1
∈
ℙ
→
¬
A
+
1
≤
A
21
elinel1
⊢
A
+
1
∈
2
…
A
∩
ℙ
→
A
+
1
∈
2
…
A
22
elfzle2
⊢
A
+
1
∈
2
…
A
→
A
+
1
≤
A
23
21
22
syl
⊢
A
+
1
∈
2
…
A
∩
ℙ
→
A
+
1
≤
A
24
20
23
nsyl
⊢
A
∈
ℤ
∧
A
+
1
∈
ℙ
→
¬
A
+
1
∈
2
…
A
∩
ℙ
25
disjsn
⊢
2
…
A
∩
ℙ
∩
A
+
1
=
∅
↔
¬
A
+
1
∈
2
…
A
∩
ℙ
26
24
25
sylibr
⊢
A
∈
ℤ
∧
A
+
1
∈
ℙ
→
2
…
A
∩
ℙ
∩
A
+
1
=
∅
27
2z
⊢
2
∈
ℤ
28
zcn
⊢
A
∈
ℤ
→
A
∈
ℂ
29
28
adantr
⊢
A
∈
ℤ
∧
A
+
1
∈
ℙ
→
A
∈
ℂ
30
ax-1cn
⊢
1
∈
ℂ
31
pncan
⊢
A
∈
ℂ
∧
1
∈
ℂ
→
A
+
1
-
1
=
A
32
29
30
31
sylancl
⊢
A
∈
ℤ
∧
A
+
1
∈
ℙ
→
A
+
1
-
1
=
A
33
prmuz2
⊢
A
+
1
∈
ℙ
→
A
+
1
∈
ℤ
≥
2
34
33
adantl
⊢
A
∈
ℤ
∧
A
+
1
∈
ℙ
→
A
+
1
∈
ℤ
≥
2
35
uz2m1nn
⊢
A
+
1
∈
ℤ
≥
2
→
A
+
1
-
1
∈
ℕ
36
34
35
syl
⊢
A
∈
ℤ
∧
A
+
1
∈
ℙ
→
A
+
1
-
1
∈
ℕ
37
32
36
eqeltrrd
⊢
A
∈
ℤ
∧
A
+
1
∈
ℙ
→
A
∈
ℕ
38
nnuz
⊢
ℕ
=
ℤ
≥
1
39
2m1e1
⊢
2
−
1
=
1
40
39
fveq2i
⊢
ℤ
≥
2
−
1
=
ℤ
≥
1
41
38
40
eqtr4i
⊢
ℕ
=
ℤ
≥
2
−
1
42
37
41
eleqtrdi
⊢
A
∈
ℤ
∧
A
+
1
∈
ℙ
→
A
∈
ℤ
≥
2
−
1
43
fzsuc2
⊢
2
∈
ℤ
∧
A
∈
ℤ
≥
2
−
1
→
2
…
A
+
1
=
2
…
A
∪
A
+
1
44
27
42
43
sylancr
⊢
A
∈
ℤ
∧
A
+
1
∈
ℙ
→
2
…
A
+
1
=
2
…
A
∪
A
+
1
45
44
ineq1d
⊢
A
∈
ℤ
∧
A
+
1
∈
ℙ
→
2
…
A
+
1
∩
ℙ
=
2
…
A
∪
A
+
1
∩
ℙ
46
indir
⊢
2
…
A
∪
A
+
1
∩
ℙ
=
2
…
A
∩
ℙ
∪
A
+
1
∩
ℙ
47
45
46
eqtrdi
⊢
A
∈
ℤ
∧
A
+
1
∈
ℙ
→
2
…
A
+
1
∩
ℙ
=
2
…
A
∩
ℙ
∪
A
+
1
∩
ℙ
48
simpr
⊢
A
∈
ℤ
∧
A
+
1
∈
ℙ
→
A
+
1
∈
ℙ
49
48
snssd
⊢
A
∈
ℤ
∧
A
+
1
∈
ℙ
→
A
+
1
⊆
ℙ
50
df-ss
⊢
A
+
1
⊆
ℙ
↔
A
+
1
∩
ℙ
=
A
+
1
51
49
50
sylib
⊢
A
∈
ℤ
∧
A
+
1
∈
ℙ
→
A
+
1
∩
ℙ
=
A
+
1
52
51
uneq2d
⊢
A
∈
ℤ
∧
A
+
1
∈
ℙ
→
2
…
A
∩
ℙ
∪
A
+
1
∩
ℙ
=
2
…
A
∩
ℙ
∪
A
+
1
53
47
52
eqtrd
⊢
A
∈
ℤ
∧
A
+
1
∈
ℙ
→
2
…
A
+
1
∩
ℙ
=
2
…
A
∩
ℙ
∪
A
+
1
54
fzfid
⊢
A
∈
ℤ
∧
A
+
1
∈
ℙ
→
2
…
A
+
1
∈
Fin
55
inss1
⊢
2
…
A
+
1
∩
ℙ
⊆
2
…
A
+
1
56
ssfi
⊢
2
…
A
+
1
∈
Fin
∧
2
…
A
+
1
∩
ℙ
⊆
2
…
A
+
1
→
2
…
A
+
1
∩
ℙ
∈
Fin
57
54
55
56
sylancl
⊢
A
∈
ℤ
∧
A
+
1
∈
ℙ
→
2
…
A
+
1
∩
ℙ
∈
Fin
58
simpr
⊢
A
∈
ℤ
∧
A
+
1
∈
ℙ
∧
p
∈
2
…
A
+
1
∩
ℙ
→
p
∈
2
…
A
+
1
∩
ℙ
59
58
elin2d
⊢
A
∈
ℤ
∧
A
+
1
∈
ℙ
∧
p
∈
2
…
A
+
1
∩
ℙ
→
p
∈
ℙ
60
prmnn
⊢
p
∈
ℙ
→
p
∈
ℕ
61
59
60
syl
⊢
A
∈
ℤ
∧
A
+
1
∈
ℙ
∧
p
∈
2
…
A
+
1
∩
ℙ
→
p
∈
ℕ
62
61
nnrpd
⊢
A
∈
ℤ
∧
A
+
1
∈
ℙ
∧
p
∈
2
…
A
+
1
∩
ℙ
→
p
∈
ℝ
+
63
62
relogcld
⊢
A
∈
ℤ
∧
A
+
1
∈
ℙ
∧
p
∈
2
…
A
+
1
∩
ℙ
→
log
p
∈
ℝ
64
63
recnd
⊢
A
∈
ℤ
∧
A
+
1
∈
ℙ
∧
p
∈
2
…
A
+
1
∩
ℙ
→
log
p
∈
ℂ
65
26
53
57
64
fsumsplit
⊢
A
∈
ℤ
∧
A
+
1
∈
ℙ
→
∑
p
∈
2
…
A
+
1
∩
ℙ
log
p
=
∑
p
∈
2
…
A
∩
ℙ
log
p
+
∑
p
∈
A
+
1
log
p
66
chtval
⊢
A
∈
ℝ
→
θ
A
=
∑
p
∈
0
A
∩
ℙ
log
p
67
17
66
syl
⊢
A
∈
ℤ
∧
A
+
1
∈
ℙ
→
θ
A
=
∑
p
∈
0
A
∩
ℙ
log
p
68
ppisval
⊢
A
∈
ℝ
→
0
A
∩
ℙ
=
2
…
A
∩
ℙ
69
17
68
syl
⊢
A
∈
ℤ
∧
A
+
1
∈
ℙ
→
0
A
∩
ℙ
=
2
…
A
∩
ℙ
70
flid
⊢
A
∈
ℤ
→
A
=
A
71
70
adantr
⊢
A
∈
ℤ
∧
A
+
1
∈
ℙ
→
A
=
A
72
71
oveq2d
⊢
A
∈
ℤ
∧
A
+
1
∈
ℙ
→
2
…
A
=
2
…
A
73
72
ineq1d
⊢
A
∈
ℤ
∧
A
+
1
∈
ℙ
→
2
…
A
∩
ℙ
=
2
…
A
∩
ℙ
74
69
73
eqtrd
⊢
A
∈
ℤ
∧
A
+
1
∈
ℙ
→
0
A
∩
ℙ
=
2
…
A
∩
ℙ
75
74
sumeq1d
⊢
A
∈
ℤ
∧
A
+
1
∈
ℙ
→
∑
p
∈
0
A
∩
ℙ
log
p
=
∑
p
∈
2
…
A
∩
ℙ
log
p
76
67
75
eqtr2d
⊢
A
∈
ℤ
∧
A
+
1
∈
ℙ
→
∑
p
∈
2
…
A
∩
ℙ
log
p
=
θ
A
77
prmnn
⊢
A
+
1
∈
ℙ
→
A
+
1
∈
ℕ
78
77
adantl
⊢
A
∈
ℤ
∧
A
+
1
∈
ℙ
→
A
+
1
∈
ℕ
79
78
nnrpd
⊢
A
∈
ℤ
∧
A
+
1
∈
ℙ
→
A
+
1
∈
ℝ
+
80
79
relogcld
⊢
A
∈
ℤ
∧
A
+
1
∈
ℙ
→
log
A
+
1
∈
ℝ
81
80
recnd
⊢
A
∈
ℤ
∧
A
+
1
∈
ℙ
→
log
A
+
1
∈
ℂ
82
fveq2
⊢
p
=
A
+
1
→
log
p
=
log
A
+
1
83
82
sumsn
⊢
A
+
1
∈
ℕ
∧
log
A
+
1
∈
ℂ
→
∑
p
∈
A
+
1
log
p
=
log
A
+
1
84
78
81
83
syl2anc
⊢
A
∈
ℤ
∧
A
+
1
∈
ℙ
→
∑
p
∈
A
+
1
log
p
=
log
A
+
1
85
76
84
oveq12d
⊢
A
∈
ℤ
∧
A
+
1
∈
ℙ
→
∑
p
∈
2
…
A
∩
ℙ
log
p
+
∑
p
∈
A
+
1
log
p
=
θ
A
+
log
A
+
1
86
15
65
85
3eqtrd
⊢
A
∈
ℤ
∧
A
+
1
∈
ℙ
→
θ
A
+
1
=
θ
A
+
log
A
+
1