Metamath Proof Explorer


Theorem chtprm

Description: The Chebyshev function at a prime. (Contributed by Mario Carneiro, 22-Sep-2014)

Ref Expression
Assertion chtprm AA+1θA+1=θA+logA+1

Proof

Step Hyp Ref Expression
1 peano2z AA+1
2 1 adantr AA+1A+1
3 zre A+1A+1
4 2 3 syl AA+1A+1
5 chtval A+1θA+1=p0A+1logp
6 4 5 syl AA+1θA+1=p0A+1logp
7 ppisval A+10A+1=2A+1
8 4 7 syl AA+10A+1=2A+1
9 flid A+1A+1=A+1
10 2 9 syl AA+1A+1=A+1
11 10 oveq2d AA+12A+1=2A+1
12 11 ineq1d AA+12A+1=2A+1
13 8 12 eqtrd AA+10A+1=2A+1
14 13 sumeq1d AA+1p0A+1logp=p2A+1logp
15 6 14 eqtrd AA+1θA+1=p2A+1logp
16 zre AA
17 16 adantr AA+1A
18 17 ltp1d AA+1A<A+1
19 17 4 ltnled AA+1A<A+1¬A+1A
20 18 19 mpbid AA+1¬A+1A
21 elinel1 A+12AA+12A
22 elfzle2 A+12AA+1A
23 21 22 syl A+12AA+1A
24 20 23 nsyl AA+1¬A+12A
25 disjsn 2AA+1=¬A+12A
26 24 25 sylibr AA+12AA+1=
27 2z 2
28 zcn AA
29 28 adantr AA+1A
30 ax-1cn 1
31 pncan A1A+1-1=A
32 29 30 31 sylancl AA+1A+1-1=A
33 prmuz2 A+1A+12
34 33 adantl AA+1A+12
35 uz2m1nn A+12A+1-1
36 34 35 syl AA+1A+1-1
37 32 36 eqeltrrd AA+1A
38 nnuz =1
39 2m1e1 21=1
40 39 fveq2i 21=1
41 38 40 eqtr4i =21
42 37 41 eleqtrdi AA+1A21
43 fzsuc2 2A212A+1=2AA+1
44 27 42 43 sylancr AA+12A+1=2AA+1
45 44 ineq1d AA+12A+1=2AA+1
46 indir 2AA+1=2AA+1
47 45 46 eqtrdi AA+12A+1=2AA+1
48 simpr AA+1A+1
49 48 snssd AA+1A+1
50 df-ss A+1A+1=A+1
51 49 50 sylib AA+1A+1=A+1
52 51 uneq2d AA+12AA+1=2AA+1
53 47 52 eqtrd AA+12A+1=2AA+1
54 fzfid AA+12A+1Fin
55 inss1 2A+12A+1
56 ssfi 2A+1Fin2A+12A+12A+1Fin
57 54 55 56 sylancl AA+12A+1Fin
58 simpr AA+1p2A+1p2A+1
59 58 elin2d AA+1p2A+1p
60 prmnn pp
61 59 60 syl AA+1p2A+1p
62 61 nnrpd AA+1p2A+1p+
63 62 relogcld AA+1p2A+1logp
64 63 recnd AA+1p2A+1logp
65 26 53 57 64 fsumsplit AA+1p2A+1logp=p2Alogp+pA+1logp
66 chtval AθA=p0Alogp
67 17 66 syl AA+1θA=p0Alogp
68 ppisval A0A=2A
69 17 68 syl AA+10A=2A
70 flid AA=A
71 70 adantr AA+1A=A
72 71 oveq2d AA+12A=2A
73 72 ineq1d AA+12A=2A
74 69 73 eqtrd AA+10A=2A
75 74 sumeq1d AA+1p0Alogp=p2Alogp
76 67 75 eqtr2d AA+1p2Alogp=θA
77 prmnn A+1A+1
78 77 adantl AA+1A+1
79 78 nnrpd AA+1A+1+
80 79 relogcld AA+1logA+1
81 80 recnd AA+1logA+1
82 fveq2 p=A+1logp=logA+1
83 82 sumsn A+1logA+1pA+1logp=logA+1
84 78 81 83 syl2anc AA+1pA+1logp=logA+1
85 76 84 oveq12d AA+1p2Alogp+pA+1logp=θA+logA+1
86 15 65 85 3eqtrd AA+1θA+1=θA+logA+1