Metamath Proof Explorer


Theorem circlevma

Description: The Circle Method, where the Vinogradov sums are weighted using the von Mangoldt function, as it appears as proposition 1.1 of Helfgott p. 5. (Contributed by Thierry Arnoux, 13-Dec-2021)

Ref Expression
Hypothesis circlevma.n φN0
Assertion circlevma φnrepr3NΛn0Λn1Λn2=01ΛvtsNx3ei2π- Nxdx

Proof

Step Hyp Ref Expression
1 circlevma.n φN0
2 3nn 3
3 2 a1i φ3
4 vmaf Λ:
5 ax-resscn
6 fss Λ:Λ:
7 4 5 6 mp2an Λ:
8 cnex V
9 nnex V
10 elmapg VVΛΛ:
11 8 9 10 mp2an ΛΛ:
12 7 11 mpbir Λ
13 12 fconst6 0..^3×Λ:0..^3
14 13 a1i φ0..^3×Λ:0..^3
15 1 3 14 circlemeth φnrepr3Na0..^30..^3×Λana=01a0..^30..^3×ΛavtsNxei2π- Nxdx
16 c0ex 0V
17 16 tpid1 0012
18 fzo0to3tp 0..^3=012
19 17 18 eleqtrri 00..^3
20 eleq1 a=0a0..^300..^3
21 19 20 mpbiri a=0a0..^3
22 12 elexi ΛV
23 22 fvconst2 a0..^30..^3×Λa=Λ
24 21 23 syl a=00..^3×Λa=Λ
25 fveq2 a=0na=n0
26 24 25 fveq12d a=00..^3×Λana=Λn0
27 1ex 1V
28 27 tpid2 1012
29 28 18 eleqtrri 10..^3
30 eleq1 a=1a0..^310..^3
31 29 30 mpbiri a=1a0..^3
32 31 23 syl a=10..^3×Λa=Λ
33 fveq2 a=1na=n1
34 32 33 fveq12d a=10..^3×Λana=Λn1
35 2ex 2V
36 35 tpid3 2012
37 36 18 eleqtrri 20..^3
38 eleq1 a=2a0..^320..^3
39 37 38 mpbiri a=2a0..^3
40 39 23 syl a=20..^3×Λa=Λ
41 fveq2 a=2na=n2
42 40 41 fveq12d a=20..^3×Λana=Λn2
43 23 fveq1d a0..^30..^3×Λana=Λna
44 43 adantl φnrepr3Na0..^30..^3×Λana=Λna
45 7 a1i φnrepr3Na0..^3Λ:
46 ssidd φnrepr3N
47 1 nn0zd φN
48 47 adantr φnrepr3NN
49 2 nnnn0i 30
50 49 a1i φnrepr3N30
51 simpr φnrepr3Nnrepr3N
52 46 48 50 51 reprf φnrepr3Nn:0..^3
53 52 ffvelcdmda φnrepr3Na0..^3na
54 45 53 ffvelcdmd φnrepr3Na0..^3Λna
55 44 54 eqeltrd φnrepr3Na0..^30..^3×Λana
56 26 34 42 55 prodfzo03 φnrepr3Na0..^30..^3×Λana=Λn0Λn1Λn2
57 56 sumeq2dv φnrepr3Na0..^30..^3×Λana=nrepr3NΛn0Λn1Λn2
58 23 adantl φx01a0..^30..^3×Λa=Λ
59 58 oveq1d φx01a0..^30..^3×ΛavtsN=ΛvtsN
60 59 fveq1d φx01a0..^30..^3×ΛavtsNx=ΛvtsNx
61 60 prodeq2dv φx01a0..^30..^3×ΛavtsNx=a0..^3ΛvtsNx
62 fzofi 0..^3Fin
63 62 a1i φx010..^3Fin
64 1 adantr φx01N0
65 ioossre 01
66 65 5 sstri 01
67 66 a1i φ01
68 67 sselda φx01x
69 7 a1i φx01Λ:
70 64 68 69 vtscl φx01ΛvtsNx
71 fprodconst 0..^3FinΛvtsNxa0..^3ΛvtsNx=ΛvtsNx0..^3
72 63 70 71 syl2anc φx01a0..^3ΛvtsNx=ΛvtsNx0..^3
73 hashfzo0 300..^3=3
74 49 73 ax-mp 0..^3=3
75 74 a1i φx010..^3=3
76 75 oveq2d φx01ΛvtsNx0..^3=ΛvtsNx3
77 61 72 76 3eqtrd φx01a0..^30..^3×ΛavtsNx=ΛvtsNx3
78 77 oveq1d φx01a0..^30..^3×ΛavtsNxei2π- Nx=ΛvtsNx3ei2π- Nx
79 78 itgeq2dv φ01a0..^30..^3×ΛavtsNxei2π- Nxdx=01ΛvtsNx3ei2π- Nxdx
80 15 57 79 3eqtr3d φnrepr3NΛn0Λn1Λn2=01ΛvtsNx3ei2π- Nxdx