| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cnre |  | 
						
							| 2 |  | recn |  | 
						
							| 3 |  | ax-icn |  | 
						
							| 4 |  | recn |  | 
						
							| 5 |  | mulcl |  | 
						
							| 6 | 3 4 5 | sylancr |  | 
						
							| 7 |  | subcl |  | 
						
							| 8 | 2 6 7 | syl2an |  | 
						
							| 9 | 2 | adantr |  | 
						
							| 10 | 6 | adantl |  | 
						
							| 11 | 9 10 9 | ppncand |  | 
						
							| 12 |  | readdcl |  | 
						
							| 13 | 12 | anidms |  | 
						
							| 14 | 13 | adantr |  | 
						
							| 15 | 11 14 | eqeltrd |  | 
						
							| 16 | 9 10 10 | pnncand |  | 
						
							| 17 | 3 | a1i |  | 
						
							| 18 | 4 | adantl |  | 
						
							| 19 | 17 18 18 | adddid |  | 
						
							| 20 | 16 19 | eqtr4d |  | 
						
							| 21 | 20 | oveq2d |  | 
						
							| 22 | 18 18 | addcld |  | 
						
							| 23 |  | mulass |  | 
						
							| 24 | 3 3 22 23 | mp3an12i |  | 
						
							| 25 | 21 24 | eqtr4d |  | 
						
							| 26 |  | ixi |  | 
						
							| 27 |  | 1re |  | 
						
							| 28 | 27 | renegcli |  | 
						
							| 29 | 26 28 | eqeltri |  | 
						
							| 30 |  | simpr |  | 
						
							| 31 | 30 30 | readdcld |  | 
						
							| 32 |  | remulcl |  | 
						
							| 33 | 29 31 32 | sylancr |  | 
						
							| 34 | 25 33 | eqeltrd |  | 
						
							| 35 |  | oveq2 |  | 
						
							| 36 | 35 | eleq1d |  | 
						
							| 37 |  | oveq2 |  | 
						
							| 38 | 37 | oveq2d |  | 
						
							| 39 | 38 | eleq1d |  | 
						
							| 40 | 36 39 | anbi12d |  | 
						
							| 41 | 40 | rspcev |  | 
						
							| 42 | 8 15 34 41 | syl12anc |  | 
						
							| 43 |  | oveq1 |  | 
						
							| 44 | 43 | eleq1d |  | 
						
							| 45 |  | oveq1 |  | 
						
							| 46 | 45 | oveq2d |  | 
						
							| 47 | 46 | eleq1d |  | 
						
							| 48 | 44 47 | anbi12d |  | 
						
							| 49 | 48 | rexbidv |  | 
						
							| 50 | 42 49 | syl5ibrcom |  | 
						
							| 51 | 50 | rexlimivv |  | 
						
							| 52 | 1 51 | syl |  | 
						
							| 53 |  | an4 |  | 
						
							| 54 |  | resubcl |  | 
						
							| 55 |  | pnpcan |  | 
						
							| 56 | 55 | 3expb |  | 
						
							| 57 | 56 | eleq1d |  | 
						
							| 58 | 54 57 | imbitrid |  | 
						
							| 59 |  | resubcl |  | 
						
							| 60 | 59 | ancoms |  | 
						
							| 61 | 3 | a1i |  | 
						
							| 62 |  | subcl |  | 
						
							| 63 | 62 | adantrl |  | 
						
							| 64 |  | subcl |  | 
						
							| 65 | 64 | adantrr |  | 
						
							| 66 | 61 63 65 | subdid |  | 
						
							| 67 |  | nnncan1 |  | 
						
							| 68 | 67 | 3com23 |  | 
						
							| 69 | 68 | 3expb |  | 
						
							| 70 | 69 | oveq2d |  | 
						
							| 71 | 66 70 | eqtr3d |  | 
						
							| 72 | 71 | eleq1d |  | 
						
							| 73 | 60 72 | imbitrid |  | 
						
							| 74 | 58 73 | anim12d |  | 
						
							| 75 |  | rimul |  | 
						
							| 76 | 75 | a1i |  | 
						
							| 77 |  | subeq0 |  | 
						
							| 78 | 77 | biimpd |  | 
						
							| 79 | 78 | adantl |  | 
						
							| 80 | 74 76 79 | 3syld |  | 
						
							| 81 | 53 80 | biimtrid |  | 
						
							| 82 | 81 | ralrimivva |  | 
						
							| 83 |  | oveq2 |  | 
						
							| 84 | 83 | eleq1d |  | 
						
							| 85 |  | oveq2 |  | 
						
							| 86 | 85 | oveq2d |  | 
						
							| 87 | 86 | eleq1d |  | 
						
							| 88 | 84 87 | anbi12d |  | 
						
							| 89 | 88 | reu4 |  | 
						
							| 90 | 52 82 89 | sylanbrc |  |