Metamath Proof Explorer


Theorem cju

Description: The complex conjugate of a complex number is unique. (Contributed by Mario Carneiro, 6-Nov-2013)

Ref Expression
Assertion cju A∃!xA+xiAx

Proof

Step Hyp Ref Expression
1 cnre AyzA=y+iz
2 recn yy
3 ax-icn i
4 recn zz
5 mulcl iziz
6 3 4 5 sylancr ziz
7 subcl yizyiz
8 2 6 7 syl2an yzyiz
9 2 adantr yzy
10 6 adantl yziz
11 9 10 9 ppncand yzy+iz+yiz=y+y
12 readdcl yyy+y
13 12 anidms yy+y
14 13 adantr yzy+y
15 11 14 eqeltrd yzy+iz+yiz
16 9 10 10 pnncand yzy+iz-yiz=iz+iz
17 3 a1i yzi
18 4 adantl yzz
19 17 18 18 adddid yziz+z=iz+iz
20 16 19 eqtr4d yzy+iz-yiz=iz+z
21 20 oveq2d yziy+iz-yiz=iiz+z
22 18 18 addcld yzz+z
23 mulass iiz+ziiz+z=iiz+z
24 3 3 22 23 mp3an12i yziiz+z=iiz+z
25 21 24 eqtr4d yziy+iz-yiz=iiz+z
26 ixi ii=1
27 1re 1
28 27 renegcli 1
29 26 28 eqeltri ii
30 simpr yzz
31 30 30 readdcld yzz+z
32 remulcl iiz+ziiz+z
33 29 31 32 sylancr yziiz+z
34 25 33 eqeltrd yziy+iz-yiz
35 oveq2 x=yizy+iz+x=y+iz+yiz
36 35 eleq1d x=yizy+iz+xy+iz+yiz
37 oveq2 x=yizy+iz-x=y+iz-yiz
38 37 oveq2d x=yiziy+iz-x=iy+iz-yiz
39 38 eleq1d x=yiziy+iz-xiy+iz-yiz
40 36 39 anbi12d x=yizy+iz+xiy+iz-xy+iz+yiziy+iz-yiz
41 40 rspcev yizy+iz+yiziy+iz-yizxy+iz+xiy+iz-x
42 8 15 34 41 syl12anc yzxy+iz+xiy+iz-x
43 oveq1 A=y+izA+x=y+iz+x
44 43 eleq1d A=y+izA+xy+iz+x
45 oveq1 A=y+izAx=y+iz-x
46 45 oveq2d A=y+iziAx=iy+iz-x
47 46 eleq1d A=y+iziAxiy+iz-x
48 44 47 anbi12d A=y+izA+xiAxy+iz+xiy+iz-x
49 48 rexbidv A=y+izxA+xiAxxy+iz+xiy+iz-x
50 42 49 syl5ibrcom yzA=y+izxA+xiAx
51 50 rexlimivv yzA=y+izxA+xiAx
52 1 51 syl AxA+xiAx
53 an4 A+xiAxA+yiAyA+xA+yiAxiAy
54 resubcl A+xA+yA+x-A+y
55 pnpcan AxyA+x-A+y=xy
56 55 3expb AxyA+x-A+y=xy
57 56 eleq1d AxyA+x-A+yxy
58 54 57 imbitrid AxyA+xA+yxy
59 resubcl iAyiAxiAyiAx
60 59 ancoms iAxiAyiAyiAx
61 3 a1i Axyi
62 subcl AyAy
63 62 adantrl AxyAy
64 subcl AxAx
65 64 adantrr AxyAx
66 61 63 65 subdid AxyiA-y-Ax=iAyiAx
67 nnncan1 AyxA-y-Ax=xy
68 67 3com23 AxyA-y-Ax=xy
69 68 3expb AxyA-y-Ax=xy
70 69 oveq2d AxyiA-y-Ax=ixy
71 66 70 eqtr3d AxyiAyiAx=ixy
72 71 eleq1d AxyiAyiAxixy
73 60 72 imbitrid AxyiAxiAyixy
74 58 73 anim12d AxyA+xA+yiAxiAyxyixy
75 rimul xyixyxy=0
76 75 a1i Axyxyixyxy=0
77 subeq0 xyxy=0x=y
78 77 biimpd xyxy=0x=y
79 78 adantl Axyxy=0x=y
80 74 76 79 3syld AxyA+xA+yiAxiAyx=y
81 53 80 biimtrid AxyA+xiAxA+yiAyx=y
82 81 ralrimivva AxyA+xiAxA+yiAyx=y
83 oveq2 x=yA+x=A+y
84 83 eleq1d x=yA+xA+y
85 oveq2 x=yAx=Ay
86 85 oveq2d x=yiAx=iAy
87 86 eleq1d x=yiAxiAy
88 84 87 anbi12d x=yA+xiAxA+yiAy
89 88 reu4 ∃!xA+xiAxxA+xiAxxyA+xiAxA+yiAyx=y
90 52 82 89 sylanbrc A∃!xA+xiAx