Metamath Proof Explorer


Theorem cmvth

Description: Cauchy's Mean Value Theorem. If F , G are real continuous functions on [ A , B ] differentiable on ( A , B ) , then there is some x e. ( A , B ) such that F ' ( x ) / G ' ( x ) = ( F ( A ) - F ( B ) ) / ( G ( A ) - G ( B ) ) . (We express the condition without division, so that we need no nonzero constraints.) (Contributed by Mario Carneiro, 29-Dec-2016)

Ref Expression
Hypotheses cmvth.a φ A
cmvth.b φ B
cmvth.lt φ A < B
cmvth.f φ F : A B cn
cmvth.g φ G : A B cn
cmvth.df φ dom F = A B
cmvth.dg φ dom G = A B
Assertion cmvth φ x A B F B F A G x = G B G A F x

Proof

Step Hyp Ref Expression
1 cmvth.a φ A
2 cmvth.b φ B
3 cmvth.lt φ A < B
4 cmvth.f φ F : A B cn
5 cmvth.g φ G : A B cn
6 cmvth.df φ dom F = A B
7 cmvth.dg φ dom G = A B
8 eqid TopOpen fld = TopOpen fld
9 8 subcn TopOpen fld × t TopOpen fld Cn TopOpen fld
10 8 mulcn × TopOpen fld × t TopOpen fld Cn TopOpen fld
11 cncff F : A B cn F : A B
12 4 11 syl φ F : A B
13 1 rexrd φ A *
14 2 rexrd φ B *
15 1 2 3 ltled φ A B
16 ubicc2 A * B * A B B A B
17 13 14 15 16 syl3anc φ B A B
18 12 17 ffvelrnd φ F B
19 lbicc2 A * B * A B A A B
20 13 14 15 19 syl3anc φ A A B
21 12 20 ffvelrnd φ F A
22 18 21 resubcld φ F B F A
23 iccssre A B A B
24 1 2 23 syl2anc φ A B
25 ax-resscn
26 24 25 sstrdi φ A B
27 25 a1i φ
28 cncfmptc F B F A A B z A B F B F A : A B cn
29 22 26 27 28 syl3anc φ z A B F B F A : A B cn
30 cncff G : A B cn G : A B
31 5 30 syl φ G : A B
32 31 feqmptd φ G = z A B G z
33 32 5 eqeltrrd φ z A B G z : A B cn
34 remulcl F B F A G z F B F A G z
35 8 10 29 33 25 34 cncfmpt2ss φ z A B F B F A G z : A B cn
36 31 17 ffvelrnd φ G B
37 31 20 ffvelrnd φ G A
38 36 37 resubcld φ G B G A
39 cncfmptc G B G A A B z A B G B G A : A B cn
40 38 26 27 39 syl3anc φ z A B G B G A : A B cn
41 12 feqmptd φ F = z A B F z
42 41 4 eqeltrrd φ z A B F z : A B cn
43 remulcl G B G A F z G B G A F z
44 8 10 40 42 25 43 cncfmpt2ss φ z A B G B G A F z : A B cn
45 resubcl F B F A G z G B G A F z F B F A G z G B G A F z
46 8 9 35 44 25 45 cncfmpt2ss φ z A B F B F A G z G B G A F z : A B cn
47 22 recnd φ F B F A
48 47 adantr φ z A B F B F A
49 31 ffvelrnda φ z A B G z
50 49 recnd φ z A B G z
51 48 50 mulcld φ z A B F B F A G z
52 38 adantr φ z A B G B G A
53 12 ffvelrnda φ z A B F z
54 52 53 remulcld φ z A B G B G A F z
55 54 recnd φ z A B G B G A F z
56 51 55 subcld φ z A B F B F A G z G B G A F z
57 8 tgioo2 topGen ran . = TopOpen fld 𝑡
58 iccntr A B int topGen ran . A B = A B
59 1 2 58 syl2anc φ int topGen ran . A B = A B
60 27 24 56 57 8 59 dvmptntr φ dz A B F B F A G z G B G A F z d z = dz A B F B F A G z G B G A F z d z
61 reelprrecn
62 61 a1i φ
63 ioossicc A B A B
64 63 sseli z A B z A B
65 64 51 sylan2 φ z A B F B F A G z
66 ovex F B F A G z V
67 66 a1i φ z A B F B F A G z V
68 64 50 sylan2 φ z A B G z
69 fvexd φ z A B G z V
70 32 oveq2d φ D G = dz A B G z d z
71 dvf G : dom G
72 7 feq2d φ G : dom G G : A B
73 71 72 mpbii φ G : A B
74 73 feqmptd φ D G = z A B G z
75 27 24 50 57 8 59 dvmptntr φ dz A B G z d z = dz A B G z d z
76 70 74 75 3eqtr3rd φ dz A B G z d z = z A B G z
77 62 68 69 76 47 dvmptcmul φ dz A B F B F A G z d z = z A B F B F A G z
78 64 55 sylan2 φ z A B G B G A F z
79 ovex G B G A F z V
80 79 a1i φ z A B G B G A F z V
81 53 recnd φ z A B F z
82 64 81 sylan2 φ z A B F z
83 fvexd φ z A B F z V
84 41 oveq2d φ D F = dz A B F z d z
85 dvf F : dom F
86 6 feq2d φ F : dom F F : A B
87 85 86 mpbii φ F : A B
88 87 feqmptd φ D F = z A B F z
89 27 24 81 57 8 59 dvmptntr φ dz A B F z d z = dz A B F z d z
90 84 88 89 3eqtr3rd φ dz A B F z d z = z A B F z
91 38 recnd φ G B G A
92 62 82 83 90 91 dvmptcmul φ dz A B G B G A F z d z = z A B G B G A F z
93 62 65 67 77 78 80 92 dvmptsub φ dz A B F B F A G z G B G A F z d z = z A B F B F A G z G B G A F z
94 60 93 eqtrd φ dz A B F B F A G z G B G A F z d z = z A B F B F A G z G B G A F z
95 94 dmeqd φ dom dz A B F B F A G z G B G A F z d z = dom z A B F B F A G z G B G A F z
96 ovex F B F A G z G B G A F z V
97 eqid z A B F B F A G z G B G A F z = z A B F B F A G z G B G A F z
98 96 97 dmmpti dom z A B F B F A G z G B G A F z = A B
99 95 98 eqtrdi φ dom dz A B F B F A G z G B G A F z d z = A B
100 18 recnd φ F B
101 37 recnd φ G A
102 100 101 mulcld φ F B G A
103 21 recnd φ F A
104 36 recnd φ G B
105 103 104 mulcld φ F A G B
106 103 101 mulcld φ F A G A
107 102 105 106 nnncan2d φ F B G A - F A G A - F A G B F A G A = F B G A F A G B
108 100 104 mulcld φ F B G B
109 108 105 102 nnncan1d φ F B G B - F A G B - F B G B F B G A = F B G A F A G B
110 107 109 eqtr4d φ F B G A - F A G A - F A G B F A G A = F B G B - F A G B - F B G B F B G A
111 100 103 101 subdird φ F B F A G A = F B G A F A G A
112 91 103 mulcomd φ G B G A F A = F A G B G A
113 103 104 101 subdid φ F A G B G A = F A G B F A G A
114 112 113 eqtrd φ G B G A F A = F A G B F A G A
115 111 114 oveq12d φ F B F A G A G B G A F A = F B G A - F A G A - F A G B F A G A
116 100 103 104 subdird φ F B F A G B = F B G B F A G B
117 91 100 mulcomd φ G B G A F B = F B G B G A
118 100 104 101 subdid φ F B G B G A = F B G B F B G A
119 117 118 eqtrd φ G B G A F B = F B G B F B G A
120 116 119 oveq12d φ F B F A G B G B G A F B = F B G B - F A G B - F B G B F B G A
121 110 115 120 3eqtr4d φ F B F A G A G B G A F A = F B F A G B G B G A F B
122 fveq2 z = A G z = G A
123 122 oveq2d z = A F B F A G z = F B F A G A
124 fveq2 z = A F z = F A
125 124 oveq2d z = A G B G A F z = G B G A F A
126 123 125 oveq12d z = A F B F A G z G B G A F z = F B F A G A G B G A F A
127 eqid z A B F B F A G z G B G A F z = z A B F B F A G z G B G A F z
128 ovex F B F A G z G B G A F z V
129 126 127 128 fvmpt3i A A B z A B F B F A G z G B G A F z A = F B F A G A G B G A F A
130 20 129 syl φ z A B F B F A G z G B G A F z A = F B F A G A G B G A F A
131 fveq2 z = B G z = G B
132 131 oveq2d z = B F B F A G z = F B F A G B
133 fveq2 z = B F z = F B
134 133 oveq2d z = B G B G A F z = G B G A F B
135 132 134 oveq12d z = B F B F A G z G B G A F z = F B F A G B G B G A F B
136 135 127 128 fvmpt3i B A B z A B F B F A G z G B G A F z B = F B F A G B G B G A F B
137 17 136 syl φ z A B F B F A G z G B G A F z B = F B F A G B G B G A F B
138 121 130 137 3eqtr4d φ z A B F B F A G z G B G A F z A = z A B F B F A G z G B G A F z B
139 1 2 3 46 99 138 rolle φ x A B dz A B F B F A G z G B G A F z d z x = 0
140 94 fveq1d φ dz A B F B F A G z G B G A F z d z x = z A B F B F A G z G B G A F z x
141 fveq2 z = x G z = G x
142 141 oveq2d z = x F B F A G z = F B F A G x
143 fveq2 z = x F z = F x
144 143 oveq2d z = x G B G A F z = G B G A F x
145 142 144 oveq12d z = x F B F A G z G B G A F z = F B F A G x G B G A F x
146 145 97 96 fvmpt3i x A B z A B F B F A G z G B G A F z x = F B F A G x G B G A F x
147 140 146 sylan9eq φ x A B dz A B F B F A G z G B G A F z d z x = F B F A G x G B G A F x
148 147 eqeq1d φ x A B dz A B F B F A G z G B G A F z d z x = 0 F B F A G x G B G A F x = 0
149 47 adantr φ x A B F B F A
150 73 ffvelrnda φ x A B G x
151 149 150 mulcld φ x A B F B F A G x
152 91 adantr φ x A B G B G A
153 87 ffvelrnda φ x A B F x
154 152 153 mulcld φ x A B G B G A F x
155 151 154 subeq0ad φ x A B F B F A G x G B G A F x = 0 F B F A G x = G B G A F x
156 148 155 bitrd φ x A B dz A B F B F A G z G B G A F z d z x = 0 F B F A G x = G B G A F x
157 156 rexbidva φ x A B dz A B F B F A G z G B G A F z d z x = 0 x A B F B F A G x = G B G A F x
158 139 157 mpbid φ x A B F B F A G x = G B G A F x