Metamath Proof Explorer


Theorem cmvth

Description: Cauchy's Mean Value Theorem. If F , G are real continuous functions on [ A , B ] differentiable on ( A , B ) , then there is some x e. ( A , B ) such that F ' ( x ) / G ' ( x ) = ( F ( A ) - F ( B ) ) / ( G ( A ) - G ( B ) ) . (We express the condition without division, so that we need no nonzero constraints.) (Contributed by Mario Carneiro, 29-Dec-2016)

Ref Expression
Hypotheses cmvth.a φA
cmvth.b φB
cmvth.lt φA<B
cmvth.f φF:ABcn
cmvth.g φG:ABcn
cmvth.df φdomF=AB
cmvth.dg φdomG=AB
Assertion cmvth φxABFBFAGx=GBGAFx

Proof

Step Hyp Ref Expression
1 cmvth.a φA
2 cmvth.b φB
3 cmvth.lt φA<B
4 cmvth.f φF:ABcn
5 cmvth.g φG:ABcn
6 cmvth.df φdomF=AB
7 cmvth.dg φdomG=AB
8 eqid TopOpenfld=TopOpenfld
9 8 subcn TopOpenfld×tTopOpenfldCnTopOpenfld
10 8 mulcn ×TopOpenfld×tTopOpenfldCnTopOpenfld
11 cncff F:ABcnF:AB
12 4 11 syl φF:AB
13 1 rexrd φA*
14 2 rexrd φB*
15 1 2 3 ltled φAB
16 ubicc2 A*B*ABBAB
17 13 14 15 16 syl3anc φBAB
18 12 17 ffvelcdmd φFB
19 lbicc2 A*B*ABAAB
20 13 14 15 19 syl3anc φAAB
21 12 20 ffvelcdmd φFA
22 18 21 resubcld φFBFA
23 iccssre ABAB
24 1 2 23 syl2anc φAB
25 ax-resscn
26 24 25 sstrdi φAB
27 25 a1i φ
28 cncfmptc FBFAABzABFBFA:ABcn
29 22 26 27 28 syl3anc φzABFBFA:ABcn
30 cncff G:ABcnG:AB
31 5 30 syl φG:AB
32 31 feqmptd φG=zABGz
33 32 5 eqeltrrd φzABGz:ABcn
34 remulcl FBFAGzFBFAGz
35 8 10 29 33 25 34 cncfmpt2ss φzABFBFAGz:ABcn
36 31 17 ffvelcdmd φGB
37 31 20 ffvelcdmd φGA
38 36 37 resubcld φGBGA
39 cncfmptc GBGAABzABGBGA:ABcn
40 38 26 27 39 syl3anc φzABGBGA:ABcn
41 12 feqmptd φF=zABFz
42 41 4 eqeltrrd φzABFz:ABcn
43 remulcl GBGAFzGBGAFz
44 8 10 40 42 25 43 cncfmpt2ss φzABGBGAFz:ABcn
45 resubcl FBFAGzGBGAFzFBFAGzGBGAFz
46 8 9 35 44 25 45 cncfmpt2ss φzABFBFAGzGBGAFz:ABcn
47 22 recnd φFBFA
48 47 adantr φzABFBFA
49 31 ffvelcdmda φzABGz
50 49 recnd φzABGz
51 48 50 mulcld φzABFBFAGz
52 38 adantr φzABGBGA
53 12 ffvelcdmda φzABFz
54 52 53 remulcld φzABGBGAFz
55 54 recnd φzABGBGAFz
56 51 55 subcld φzABFBFAGzGBGAFz
57 8 tgioo2 topGenran.=TopOpenfld𝑡
58 iccntr ABinttopGenran.AB=AB
59 1 2 58 syl2anc φinttopGenran.AB=AB
60 27 24 56 57 8 59 dvmptntr φdzABFBFAGzGBGAFzdz=dzABFBFAGzGBGAFzdz
61 reelprrecn
62 61 a1i φ
63 ioossicc ABAB
64 63 sseli zABzAB
65 64 51 sylan2 φzABFBFAGz
66 ovex FBFAGzV
67 66 a1i φzABFBFAGzV
68 64 50 sylan2 φzABGz
69 fvexd φzABGzV
70 32 oveq2d φDG=dzABGzdz
71 dvf G:domG
72 7 feq2d φG:domGG:AB
73 71 72 mpbii φG:AB
74 73 feqmptd φDG=zABGz
75 27 24 50 57 8 59 dvmptntr φdzABGzdz=dzABGzdz
76 70 74 75 3eqtr3rd φdzABGzdz=zABGz
77 62 68 69 76 47 dvmptcmul φdzABFBFAGzdz=zABFBFAGz
78 64 55 sylan2 φzABGBGAFz
79 ovex GBGAFzV
80 79 a1i φzABGBGAFzV
81 53 recnd φzABFz
82 64 81 sylan2 φzABFz
83 fvexd φzABFzV
84 41 oveq2d φDF=dzABFzdz
85 dvf F:domF
86 6 feq2d φF:domFF:AB
87 85 86 mpbii φF:AB
88 87 feqmptd φDF=zABFz
89 27 24 81 57 8 59 dvmptntr φdzABFzdz=dzABFzdz
90 84 88 89 3eqtr3rd φdzABFzdz=zABFz
91 38 recnd φGBGA
92 62 82 83 90 91 dvmptcmul φdzABGBGAFzdz=zABGBGAFz
93 62 65 67 77 78 80 92 dvmptsub φdzABFBFAGzGBGAFzdz=zABFBFAGzGBGAFz
94 60 93 eqtrd φdzABFBFAGzGBGAFzdz=zABFBFAGzGBGAFz
95 94 dmeqd φdomdzABFBFAGzGBGAFzdz=domzABFBFAGzGBGAFz
96 ovex FBFAGzGBGAFzV
97 eqid zABFBFAGzGBGAFz=zABFBFAGzGBGAFz
98 96 97 dmmpti domzABFBFAGzGBGAFz=AB
99 95 98 eqtrdi φdomdzABFBFAGzGBGAFzdz=AB
100 18 recnd φFB
101 37 recnd φGA
102 100 101 mulcld φFBGA
103 21 recnd φFA
104 36 recnd φGB
105 103 104 mulcld φFAGB
106 103 101 mulcld φFAGA
107 102 105 106 nnncan2d φFBGA-FAGA-FAGBFAGA=FBGAFAGB
108 100 104 mulcld φFBGB
109 108 105 102 nnncan1d φFBGB-FAGB-FBGBFBGA=FBGAFAGB
110 107 109 eqtr4d φFBGA-FAGA-FAGBFAGA=FBGB-FAGB-FBGBFBGA
111 100 103 101 subdird φFBFAGA=FBGAFAGA
112 91 103 mulcomd φGBGAFA=FAGBGA
113 103 104 101 subdid φFAGBGA=FAGBFAGA
114 112 113 eqtrd φGBGAFA=FAGBFAGA
115 111 114 oveq12d φFBFAGAGBGAFA=FBGA-FAGA-FAGBFAGA
116 100 103 104 subdird φFBFAGB=FBGBFAGB
117 91 100 mulcomd φGBGAFB=FBGBGA
118 100 104 101 subdid φFBGBGA=FBGBFBGA
119 117 118 eqtrd φGBGAFB=FBGBFBGA
120 116 119 oveq12d φFBFAGBGBGAFB=FBGB-FAGB-FBGBFBGA
121 110 115 120 3eqtr4d φFBFAGAGBGAFA=FBFAGBGBGAFB
122 fveq2 z=AGz=GA
123 122 oveq2d z=AFBFAGz=FBFAGA
124 fveq2 z=AFz=FA
125 124 oveq2d z=AGBGAFz=GBGAFA
126 123 125 oveq12d z=AFBFAGzGBGAFz=FBFAGAGBGAFA
127 eqid zABFBFAGzGBGAFz=zABFBFAGzGBGAFz
128 ovex FBFAGzGBGAFzV
129 126 127 128 fvmpt3i AABzABFBFAGzGBGAFzA=FBFAGAGBGAFA
130 20 129 syl φzABFBFAGzGBGAFzA=FBFAGAGBGAFA
131 fveq2 z=BGz=GB
132 131 oveq2d z=BFBFAGz=FBFAGB
133 fveq2 z=BFz=FB
134 133 oveq2d z=BGBGAFz=GBGAFB
135 132 134 oveq12d z=BFBFAGzGBGAFz=FBFAGBGBGAFB
136 135 127 128 fvmpt3i BABzABFBFAGzGBGAFzB=FBFAGBGBGAFB
137 17 136 syl φzABFBFAGzGBGAFzB=FBFAGBGBGAFB
138 121 130 137 3eqtr4d φzABFBFAGzGBGAFzA=zABFBFAGzGBGAFzB
139 1 2 3 46 99 138 rolle φxABdzABFBFAGzGBGAFzdzx=0
140 94 fveq1d φdzABFBFAGzGBGAFzdzx=zABFBFAGzGBGAFzx
141 fveq2 z=xGz=Gx
142 141 oveq2d z=xFBFAGz=FBFAGx
143 fveq2 z=xFz=Fx
144 143 oveq2d z=xGBGAFz=GBGAFx
145 142 144 oveq12d z=xFBFAGzGBGAFz=FBFAGxGBGAFx
146 145 97 96 fvmpt3i xABzABFBFAGzGBGAFzx=FBFAGxGBGAFx
147 140 146 sylan9eq φxABdzABFBFAGzGBGAFzdzx=FBFAGxGBGAFx
148 147 eqeq1d φxABdzABFBFAGzGBGAFzdzx=0FBFAGxGBGAFx=0
149 47 adantr φxABFBFA
150 73 ffvelcdmda φxABGx
151 149 150 mulcld φxABFBFAGx
152 91 adantr φxABGBGA
153 87 ffvelcdmda φxABFx
154 152 153 mulcld φxABGBGAFx
155 151 154 subeq0ad φxABFBFAGxGBGAFx=0FBFAGx=GBGAFx
156 148 155 bitrd φxABdzABFBFAGzGBGAFzdzx=0FBFAGx=GBGAFx
157 156 rexbidva φxABdzABFBFAGzGBGAFzdzx=0xABFBFAGx=GBGAFx
158 139 157 mpbid φxABFBFAGx=GBGAFx