| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ssdif0 |
|
| 2 |
|
simpr |
|
| 3 |
|
simplr |
|
| 4 |
2 3
|
eqssd |
|
| 5 |
4
|
orcd |
|
| 6 |
1 5
|
sylan2br |
|
| 7 |
|
n0 |
|
| 8 |
|
simpll |
|
| 9 |
|
cnfldbas |
|
| 10 |
9
|
subrgss |
|
| 11 |
8 10
|
syl |
|
| 12 |
|
replim |
|
| 13 |
12
|
ad2antll |
|
| 14 |
|
simpll |
|
| 15 |
|
simplr |
|
| 16 |
|
recl |
|
| 17 |
16
|
ad2antll |
|
| 18 |
15 17
|
sseldd |
|
| 19 |
|
ax-icn |
|
| 20 |
19
|
a1i |
|
| 21 |
|
eldifi |
|
| 22 |
21
|
adantl |
|
| 23 |
11 22
|
sseldd |
|
| 24 |
|
imcl |
|
| 25 |
23 24
|
syl |
|
| 26 |
25
|
recnd |
|
| 27 |
|
eldifn |
|
| 28 |
27
|
adantl |
|
| 29 |
|
reim0b |
|
| 30 |
29
|
necon3bbid |
|
| 31 |
23 30
|
syl |
|
| 32 |
28 31
|
mpbid |
|
| 33 |
20 26 32
|
divcan4d |
|
| 34 |
|
mulcl |
|
| 35 |
19 26 34
|
sylancr |
|
| 36 |
35 26 32
|
divrecd |
|
| 37 |
33 36
|
eqtr3d |
|
| 38 |
23
|
recld |
|
| 39 |
38
|
recnd |
|
| 40 |
23 39
|
negsubd |
|
| 41 |
|
replim |
|
| 42 |
23 41
|
syl |
|
| 43 |
42
|
oveq1d |
|
| 44 |
39 35
|
pncan2d |
|
| 45 |
40 43 44
|
3eqtrd |
|
| 46 |
|
simplr |
|
| 47 |
38
|
renegcld |
|
| 48 |
46 47
|
sseldd |
|
| 49 |
|
cnfldadd |
|
| 50 |
49
|
subrgacl |
|
| 51 |
8 22 48 50
|
syl3anc |
|
| 52 |
45 51
|
eqeltrrd |
|
| 53 |
25 32
|
rereccld |
|
| 54 |
46 53
|
sseldd |
|
| 55 |
|
cnfldmul |
|
| 56 |
55
|
subrgmcl |
|
| 57 |
8 52 54 56
|
syl3anc |
|
| 58 |
37 57
|
eqeltrd |
|
| 59 |
58
|
adantrr |
|
| 60 |
|
imcl |
|
| 61 |
60
|
ad2antll |
|
| 62 |
15 61
|
sseldd |
|
| 63 |
55
|
subrgmcl |
|
| 64 |
14 59 62 63
|
syl3anc |
|
| 65 |
49
|
subrgacl |
|
| 66 |
14 18 64 65
|
syl3anc |
|
| 67 |
13 66
|
eqeltrd |
|
| 68 |
67
|
expr |
|
| 69 |
68
|
ssrdv |
|
| 70 |
11 69
|
eqssd |
|
| 71 |
70
|
olcd |
|
| 72 |
71
|
ex |
|
| 73 |
72
|
exlimdv |
|
| 74 |
73
|
imp |
|
| 75 |
7 74
|
sylan2b |
|
| 76 |
6 75
|
pm2.61dane |
|
| 77 |
|
elprg |
|
| 78 |
77
|
adantr |
|
| 79 |
76 78
|
mpbird |
|