Metamath Proof Explorer


Theorem cnsubrg

Description: There are no subrings of the complex numbers strictly between RR and CC . (Contributed by Mario Carneiro, 15-Oct-2015)

Ref Expression
Assertion cnsubrg R SubRing fld R R

Proof

Step Hyp Ref Expression
1 ssdif0 R R =
2 simpr R SubRing fld R R R
3 simplr R SubRing fld R R R
4 2 3 eqssd R SubRing fld R R R =
5 4 orcd R SubRing fld R R R = R =
6 1 5 sylan2br R SubRing fld R R = R = R =
7 n0 R x x R
8 simpll R SubRing fld R x R R SubRing fld
9 cnfldbas = Base fld
10 9 subrgss R SubRing fld R
11 8 10 syl R SubRing fld R x R R
12 replim y y = y + i y
13 12 ad2antll R SubRing fld R x R y y = y + i y
14 simpll R SubRing fld R x R y R SubRing fld
15 simplr R SubRing fld R x R y R
16 recl y y
17 16 ad2antll R SubRing fld R x R y y
18 15 17 sseldd R SubRing fld R x R y y R
19 ax-icn i
20 19 a1i R SubRing fld R x R i
21 eldifi x R x R
22 21 adantl R SubRing fld R x R x R
23 11 22 sseldd R SubRing fld R x R x
24 imcl x x
25 23 24 syl R SubRing fld R x R x
26 25 recnd R SubRing fld R x R x
27 eldifn x R ¬ x
28 27 adantl R SubRing fld R x R ¬ x
29 reim0b x x x = 0
30 29 necon3bbid x ¬ x x 0
31 23 30 syl R SubRing fld R x R ¬ x x 0
32 28 31 mpbid R SubRing fld R x R x 0
33 20 26 32 divcan4d R SubRing fld R x R i x x = i
34 mulcl i x i x
35 19 26 34 sylancr R SubRing fld R x R i x
36 35 26 32 divrecd R SubRing fld R x R i x x = i x 1 x
37 33 36 eqtr3d R SubRing fld R x R i = i x 1 x
38 23 recld R SubRing fld R x R x
39 38 recnd R SubRing fld R x R x
40 23 39 negsubd R SubRing fld R x R x + x = x x
41 replim x x = x + i x
42 23 41 syl R SubRing fld R x R x = x + i x
43 42 oveq1d R SubRing fld R x R x x = x + i x - x
44 39 35 pncan2d R SubRing fld R x R x + i x - x = i x
45 40 43 44 3eqtrd R SubRing fld R x R x + x = i x
46 simplr R SubRing fld R x R R
47 38 renegcld R SubRing fld R x R x
48 46 47 sseldd R SubRing fld R x R x R
49 cnfldadd + = + fld
50 49 subrgacl R SubRing fld x R x R x + x R
51 8 22 48 50 syl3anc R SubRing fld R x R x + x R
52 45 51 eqeltrrd R SubRing fld R x R i x R
53 25 32 rereccld R SubRing fld R x R 1 x
54 46 53 sseldd R SubRing fld R x R 1 x R
55 cnfldmul × = fld
56 55 subrgmcl R SubRing fld i x R 1 x R i x 1 x R
57 8 52 54 56 syl3anc R SubRing fld R x R i x 1 x R
58 37 57 eqeltrd R SubRing fld R x R i R
59 58 adantrr R SubRing fld R x R y i R
60 imcl y y
61 60 ad2antll R SubRing fld R x R y y
62 15 61 sseldd R SubRing fld R x R y y R
63 55 subrgmcl R SubRing fld i R y R i y R
64 14 59 62 63 syl3anc R SubRing fld R x R y i y R
65 49 subrgacl R SubRing fld y R i y R y + i y R
66 14 18 64 65 syl3anc R SubRing fld R x R y y + i y R
67 13 66 eqeltrd R SubRing fld R x R y y R
68 67 expr R SubRing fld R x R y y R
69 68 ssrdv R SubRing fld R x R R
70 11 69 eqssd R SubRing fld R x R R =
71 70 olcd R SubRing fld R x R R = R =
72 71 ex R SubRing fld R x R R = R =
73 72 exlimdv R SubRing fld R x x R R = R =
74 73 imp R SubRing fld R x x R R = R =
75 7 74 sylan2b R SubRing fld R R R = R =
76 6 75 pm2.61dane R SubRing fld R R = R =
77 elprg R SubRing fld R R = R =
78 77 adantr R SubRing fld R R R = R =
79 76 78 mpbird R SubRing fld R R