Metamath Proof Explorer


Theorem cnsubrg

Description: There are no subrings of the complex numbers strictly between RR and CC . (Contributed by Mario Carneiro, 15-Oct-2015)

Ref Expression
Assertion cnsubrg RSubRingfldRR

Proof

Step Hyp Ref Expression
1 ssdif0 RR=
2 simpr RSubRingfldRRR
3 simplr RSubRingfldRRR
4 2 3 eqssd RSubRingfldRRR=
5 4 orcd RSubRingfldRRR=R=
6 1 5 sylan2br RSubRingfldRR=R=R=
7 n0 RxxR
8 simpll RSubRingfldRxRRSubRingfld
9 cnfldbas =Basefld
10 9 subrgss RSubRingfldR
11 8 10 syl RSubRingfldRxRR
12 replim yy=y+iy
13 12 ad2antll RSubRingfldRxRyy=y+iy
14 simpll RSubRingfldRxRyRSubRingfld
15 simplr RSubRingfldRxRyR
16 recl yy
17 16 ad2antll RSubRingfldRxRyy
18 15 17 sseldd RSubRingfldRxRyyR
19 ax-icn i
20 19 a1i RSubRingfldRxRi
21 eldifi xRxR
22 21 adantl RSubRingfldRxRxR
23 11 22 sseldd RSubRingfldRxRx
24 imcl xx
25 23 24 syl RSubRingfldRxRx
26 25 recnd RSubRingfldRxRx
27 eldifn xR¬x
28 27 adantl RSubRingfldRxR¬x
29 reim0b xxx=0
30 29 necon3bbid x¬xx0
31 23 30 syl RSubRingfldRxR¬xx0
32 28 31 mpbid RSubRingfldRxRx0
33 20 26 32 divcan4d RSubRingfldRxRixx=i
34 mulcl ixix
35 19 26 34 sylancr RSubRingfldRxRix
36 35 26 32 divrecd RSubRingfldRxRixx=ix1x
37 33 36 eqtr3d RSubRingfldRxRi=ix1x
38 23 recld RSubRingfldRxRx
39 38 recnd RSubRingfldRxRx
40 23 39 negsubd RSubRingfldRxRx+x=xx
41 replim xx=x+ix
42 23 41 syl RSubRingfldRxRx=x+ix
43 42 oveq1d RSubRingfldRxRxx=x+ix-x
44 39 35 pncan2d RSubRingfldRxRx+ix-x=ix
45 40 43 44 3eqtrd RSubRingfldRxRx+x=ix
46 simplr RSubRingfldRxRR
47 38 renegcld RSubRingfldRxRx
48 46 47 sseldd RSubRingfldRxRxR
49 cnfldadd +=+fld
50 49 subrgacl RSubRingfldxRxRx+xR
51 8 22 48 50 syl3anc RSubRingfldRxRx+xR
52 45 51 eqeltrrd RSubRingfldRxRixR
53 25 32 rereccld RSubRingfldRxR1x
54 46 53 sseldd RSubRingfldRxR1xR
55 cnfldmul ×=fld
56 55 subrgmcl RSubRingfldixR1xRix1xR
57 8 52 54 56 syl3anc RSubRingfldRxRix1xR
58 37 57 eqeltrd RSubRingfldRxRiR
59 58 adantrr RSubRingfldRxRyiR
60 imcl yy
61 60 ad2antll RSubRingfldRxRyy
62 15 61 sseldd RSubRingfldRxRyyR
63 55 subrgmcl RSubRingfldiRyRiyR
64 14 59 62 63 syl3anc RSubRingfldRxRyiyR
65 49 subrgacl RSubRingfldyRiyRy+iyR
66 14 18 64 65 syl3anc RSubRingfldRxRyy+iyR
67 13 66 eqeltrd RSubRingfldRxRyyR
68 67 expr RSubRingfldRxRyyR
69 68 ssrdv RSubRingfldRxRR
70 11 69 eqssd RSubRingfldRxRR=
71 70 olcd RSubRingfldRxRR=R=
72 71 ex RSubRingfldRxRR=R=
73 72 exlimdv RSubRingfldRxxRR=R=
74 73 imp RSubRingfldRxxRR=R=
75 7 74 sylan2b RSubRingfldRRR=R=
76 6 75 pm2.61dane RSubRingfldRR=R=
77 elprg RSubRingfldRR=R=
78 77 adantr RSubRingfldRRR=R=
79 76 78 mpbird RSubRingfldRR