Metamath Proof Explorer


Theorem cntzsubr

Description: Centralizers in a ring are subrings. (Contributed by Stefan O'Rear, 6-Sep-2015) (Revised by Mario Carneiro, 19-Apr-2016)

Ref Expression
Hypotheses cntzsubr.b B=BaseR
cntzsubr.m M=mulGrpR
cntzsubr.z Z=CntzM
Assertion cntzsubr RRingSBZSSubRingR

Proof

Step Hyp Ref Expression
1 cntzsubr.b B=BaseR
2 cntzsubr.m M=mulGrpR
3 cntzsubr.z Z=CntzM
4 2 1 mgpbas B=BaseM
5 4 3 cntzssv ZSB
6 5 a1i RRingSBZSB
7 simpll RRingSBzSRRing
8 ssel2 SBzSzB
9 8 adantll RRingSBzSzB
10 eqid R=R
11 eqid 0R=0R
12 1 10 11 ringlz RRingzB0RRz=0R
13 7 9 12 syl2anc RRingSBzS0RRz=0R
14 1 10 11 ringrz RRingzBzR0R=0R
15 7 9 14 syl2anc RRingSBzSzR0R=0R
16 13 15 eqtr4d RRingSBzS0RRz=zR0R
17 16 ralrimiva RRingSBzS0RRz=zR0R
18 simpr RRingSBSB
19 1 11 ring0cl RRing0RB
20 19 adantr RRingSB0RB
21 2 10 mgpplusg R=+M
22 4 21 3 cntzel SB0RB0RZSzS0RRz=zR0R
23 18 20 22 syl2anc RRingSB0RZSzS0RRz=zR0R
24 17 23 mpbird RRingSB0RZS
25 24 ne0d RRingSBZS
26 simpl2 RRingSBxZSyZSzSxZS
27 simpr RRingSBxZSyZSzSzS
28 21 3 cntzi xZSzSxRz=zRx
29 26 27 28 syl2anc RRingSBxZSyZSzSxRz=zRx
30 simpl3 RRingSBxZSyZSzSyZS
31 21 3 cntzi yZSzSyRz=zRy
32 30 27 31 syl2anc RRingSBxZSyZSzSyRz=zRy
33 29 32 oveq12d RRingSBxZSyZSzSxRz+RyRz=zRx+RzRy
34 simpl1l RRingSBxZSyZSzSRRing
35 5 26 sselid RRingSBxZSyZSzSxB
36 5 30 sselid RRingSBxZSyZSzSyB
37 simp1r RRingSBxZSyZSSB
38 37 sselda RRingSBxZSyZSzSzB
39 eqid +R=+R
40 1 39 10 ringdir RRingxByBzBx+RyRz=xRz+RyRz
41 34 35 36 38 40 syl13anc RRingSBxZSyZSzSx+RyRz=xRz+RyRz
42 1 39 10 ringdi RRingzBxByBzRx+Ry=zRx+RzRy
43 34 38 35 36 42 syl13anc RRingSBxZSyZSzSzRx+Ry=zRx+RzRy
44 33 41 43 3eqtr4d RRingSBxZSyZSzSx+RyRz=zRx+Ry
45 44 ralrimiva RRingSBxZSyZSzSx+RyRz=zRx+Ry
46 simp1l RRingSBxZSyZSRRing
47 simp2 RRingSBxZSyZSxZS
48 5 47 sselid RRingSBxZSyZSxB
49 simp3 RRingSBxZSyZSyZS
50 5 49 sselid RRingSBxZSyZSyB
51 1 39 ringacl RRingxByBx+RyB
52 46 48 50 51 syl3anc RRingSBxZSyZSx+RyB
53 4 21 3 cntzel SBx+RyBx+RyZSzSx+RyRz=zRx+Ry
54 37 52 53 syl2anc RRingSBxZSyZSx+RyZSzSx+RyRz=zRx+Ry
55 45 54 mpbird RRingSBxZSyZSx+RyZS
56 55 3expa RRingSBxZSyZSx+RyZS
57 56 ralrimiva RRingSBxZSyZSx+RyZS
58 28 adantll RRingSBxZSzSxRz=zRx
59 58 fveq2d RRingSBxZSzSinvgRxRz=invgRzRx
60 eqid invgR=invgR
61 simplll RRingSBxZSzSRRing
62 simplr RRingSBxZSzSxZS
63 5 62 sselid RRingSBxZSzSxB
64 simplr RRingSBxZSSB
65 64 sselda RRingSBxZSzSzB
66 1 10 60 61 63 65 ringmneg1 RRingSBxZSzSinvgRxRz=invgRxRz
67 1 10 60 61 65 63 ringmneg2 RRingSBxZSzSzRinvgRx=invgRzRx
68 59 66 67 3eqtr4d RRingSBxZSzSinvgRxRz=zRinvgRx
69 68 ralrimiva RRingSBxZSzSinvgRxRz=zRinvgRx
70 ringgrp RRingRGrp
71 70 ad2antrr RRingSBxZSRGrp
72 simpr RRingSBxZSxZS
73 5 72 sselid RRingSBxZSxB
74 1 60 grpinvcl RGrpxBinvgRxB
75 71 73 74 syl2anc RRingSBxZSinvgRxB
76 4 21 3 cntzel SBinvgRxBinvgRxZSzSinvgRxRz=zRinvgRx
77 64 75 76 syl2anc RRingSBxZSinvgRxZSzSinvgRxRz=zRinvgRx
78 69 77 mpbird RRingSBxZSinvgRxZS
79 57 78 jca RRingSBxZSyZSx+RyZSinvgRxZS
80 79 ralrimiva RRingSBxZSyZSx+RyZSinvgRxZS
81 70 adantr RRingSBRGrp
82 1 39 60 issubg2 RGrpZSSubGrpRZSBZSxZSyZSx+RyZSinvgRxZS
83 81 82 syl RRingSBZSSubGrpRZSBZSxZSyZSx+RyZSinvgRxZS
84 6 25 80 83 mpbir3and RRingSBZSSubGrpR
85 2 ringmgp RRingMMnd
86 4 3 cntzsubm MMndSBZSSubMndM
87 85 86 sylan RRingSBZSSubMndM
88 2 issubrg3 RRingZSSubRingRZSSubGrpRZSSubMndM
89 88 adantr RRingSBZSSubRingRZSSubGrpRZSSubMndM
90 84 87 89 mpbir2and RRingSBZSSubRingR