Metamath Proof Explorer


Theorem coe1pwmul

Description: Coefficient vector of a polynomial multiplied on the left by a variable power. (Contributed by Stefan O'Rear, 1-Apr-2015)

Ref Expression
Hypotheses coe1pwmul.z 0˙=0R
coe1pwmul.p P=Poly1R
coe1pwmul.x X=var1R
coe1pwmul.n N=mulGrpP
coe1pwmul.e ×˙=N
coe1pwmul.b B=BaseP
coe1pwmul.t ·˙=P
coe1pwmul.r φRRing
coe1pwmul.a φAB
coe1pwmul.d φD0
Assertion coe1pwmul φcoe1D×˙X·˙A=x0ifDxcoe1AxD0˙

Proof

Step Hyp Ref Expression
1 coe1pwmul.z 0˙=0R
2 coe1pwmul.p P=Poly1R
3 coe1pwmul.x X=var1R
4 coe1pwmul.n N=mulGrpP
5 coe1pwmul.e ×˙=N
6 coe1pwmul.b B=BaseP
7 coe1pwmul.t ·˙=P
8 coe1pwmul.r φRRing
9 coe1pwmul.a φAB
10 coe1pwmul.d φD0
11 eqid BaseR=BaseR
12 eqid P=P
13 eqid R=R
14 eqid 1R=1R
15 11 14 ringidcl RRing1RBaseR
16 8 15 syl φ1RBaseR
17 1 11 2 3 12 4 5 6 7 13 9 8 16 10 coe1tmmul φcoe11RPD×˙X·˙A=x0ifDx1RRcoe1AxD0˙
18 2 ply1sca RRingR=ScalarP
19 8 18 syl φR=ScalarP
20 19 fveq2d φ1R=1ScalarP
21 20 oveq1d φ1RPD×˙X=1ScalarPPD×˙X
22 2 ply1lmod RRingPLMod
23 8 22 syl φPLMod
24 4 6 mgpbas B=BaseN
25 2 ply1ring RRingPRing
26 4 ringmgp PRingNMnd
27 8 25 26 3syl φNMnd
28 3 2 6 vr1cl RRingXB
29 8 28 syl φXB
30 24 5 27 10 29 mulgnn0cld φD×˙XB
31 eqid ScalarP=ScalarP
32 eqid 1ScalarP=1ScalarP
33 6 31 12 32 lmodvs1 PLModD×˙XB1ScalarPPD×˙X=D×˙X
34 23 30 33 syl2anc φ1ScalarPPD×˙X=D×˙X
35 21 34 eqtrd φ1RPD×˙X=D×˙X
36 35 fvoveq1d φcoe11RPD×˙X·˙A=coe1D×˙X·˙A
37 8 ad2antrr φx0DxRRing
38 eqid coe1A=coe1A
39 38 6 2 11 coe1f ABcoe1A:0BaseR
40 9 39 syl φcoe1A:0BaseR
41 40 ad2antrr φx0Dxcoe1A:0BaseR
42 10 ad2antrr φx0DxD0
43 simplr φx0Dxx0
44 simpr φx0DxDx
45 nn0sub2 D0x0DxxD0
46 42 43 44 45 syl3anc φx0DxxD0
47 41 46 ffvelcdmd φx0Dxcoe1AxDBaseR
48 11 13 14 ringlidm RRingcoe1AxDBaseR1RRcoe1AxD=coe1AxD
49 37 47 48 syl2anc φx0Dx1RRcoe1AxD=coe1AxD
50 49 ifeq1da φx0ifDx1RRcoe1AxD0˙=ifDxcoe1AxD0˙
51 50 mpteq2dva φx0ifDx1RRcoe1AxD0˙=x0ifDxcoe1AxD0˙
52 17 36 51 3eqtr3d φcoe1D×˙X·˙A=x0ifDxcoe1AxD0˙