| Step | Hyp | Ref | Expression | 
						
							| 1 |  | conjghm.x |  | 
						
							| 2 |  | conjghm.p |  | 
						
							| 3 |  | conjghm.m |  | 
						
							| 4 |  | conjsubg.f |  | 
						
							| 5 |  | conjnmz.1 |  | 
						
							| 6 | 5 | ssrab3 |  | 
						
							| 7 |  | simpr |  | 
						
							| 8 | 6 7 | sselid |  | 
						
							| 9 | 1 2 3 4 5 | conjnmz |  | 
						
							| 10 | 8 9 | jca |  | 
						
							| 11 |  | simprl |  | 
						
							| 12 |  | simplrr |  | 
						
							| 13 | 12 | eleq2d |  | 
						
							| 14 |  | subgrcl |  | 
						
							| 15 | 14 | ad3antrrr |  | 
						
							| 16 |  | simpllr |  | 
						
							| 17 | 1 | subgss |  | 
						
							| 18 | 17 | ad2antrr |  | 
						
							| 19 | 18 | sselda |  | 
						
							| 20 | 1 2 3 | grpaddsubass |  | 
						
							| 21 | 15 16 19 16 20 | syl13anc |  | 
						
							| 22 | 21 | eqeq1d |  | 
						
							| 23 | 1 3 | grpsubcl |  | 
						
							| 24 | 15 19 16 23 | syl3anc |  | 
						
							| 25 |  | simplr |  | 
						
							| 26 | 1 2 | grplcan |  | 
						
							| 27 | 15 24 25 16 26 | syl13anc |  | 
						
							| 28 | 1 2 3 | grpsubadd |  | 
						
							| 29 | 15 19 16 25 28 | syl13anc |  | 
						
							| 30 | 22 27 29 | 3bitrd |  | 
						
							| 31 |  | eqcom |  | 
						
							| 32 |  | eqcom |  | 
						
							| 33 | 30 31 32 | 3bitr4g |  | 
						
							| 34 | 33 | rexbidva |  | 
						
							| 35 | 34 | adantlrr |  | 
						
							| 36 |  | ovex |  | 
						
							| 37 |  | eqeq1 |  | 
						
							| 38 | 37 | rexbidv |  | 
						
							| 39 | 4 | rnmpt |  | 
						
							| 40 | 36 38 39 | elab2 |  | 
						
							| 41 |  | risset |  | 
						
							| 42 | 35 40 41 | 3bitr4g |  | 
						
							| 43 | 13 42 | bitrd |  | 
						
							| 44 | 43 | ralrimiva |  | 
						
							| 45 | 5 | elnmz |  | 
						
							| 46 | 11 44 45 | sylanbrc |  | 
						
							| 47 | 10 46 | impbida |  |