Metamath Proof Explorer


Theorem cotrclrcl

Description: The composition of the reflexive and transitive closures is the reflexive-transitive closure. (Contributed by RP, 21-Jun-2020)

Ref Expression
Assertion cotrclrcl t+r*=t*

Proof

Step Hyp Ref Expression
1 dftrcl3 t+=aViari
2 dfrcl4 r*=bVj01brj
3 dfrtrcl3 t*=cVk0crk
4 nnex V
5 prex 01V
6 df-n0 0=0
7 df-pr 01=01
8 7 equncomi 01=10
9 8 uneq2i 01=10
10 unass 10=10
11 1nn 1
12 snssi 11
13 11 12 ax-mp 1
14 ssequn2 11=
15 13 14 mpbi 1=
16 15 uneq1i 10=0
17 9 10 16 3eqtr2ri 0=01
18 6 17 eqtri 0=01
19 oveq2 k=idrk=dri
20 19 cbviunv kdrk=idri
21 ss2iun idrij01drjriidriij01drjri
22 1ex 1V
23 22 prid2 101
24 oveq2 j=1drj=dr1
25 relexp1g dVdr1=d
26 25 elv dr1=d
27 24 26 eqtrdi j=1drj=d
28 27 ssiun2s 101dj01drj
29 23 28 ax-mp dj01drj
30 29 a1i idj01drj
31 ovex drjV
32 5 31 iunex j01drjV
33 32 a1i ij01drjV
34 nnnn0 ii0
35 30 33 34 relexpss1d idrij01drjri
36 21 35 mprg idriij01drjri
37 20 36 eqsstri kdrkij01drjri
38 oveq2 i=1j01drjri=j01drjr1
39 relexp1g j01drjVj01drjr1=j01drj
40 32 39 ax-mp j01drjr1=j01drj
41 oveq2 j=kdrj=drk
42 41 cbviunv j01drj=k01drk
43 40 42 eqtri j01drjr1=k01drk
44 38 43 eqtrdi i=1j01drjri=k01drk
45 44 ssiun2s 1k01drkij01drjri
46 11 45 ax-mp k01drkij01drjri
47 iunss ij01drjrik0drkij01drjrik0drk
48 iuneq1 01=01j01drj=j01drj
49 7 48 ax-mp j01drj=j01drj
50 iunxun j01drj=j0drjj1drj
51 c0ex 0V
52 oveq2 j=0drj=dr0
53 51 52 iunxsn j0drj=dr0
54 22 24 iunxsn j1drj=dr1
55 53 54 uneq12i j0drjj1drj=dr0dr1
56 49 50 55 3eqtri j01drj=dr0dr1
57 56 oveq1i j01drjri=dr0dr1ri
58 oveq2 x=1dr0dr1rx=dr0dr1r1
59 58 sseq1d x=1dr0dr1rxk0drkdr0dr1r1k0drk
60 oveq2 x=ydr0dr1rx=dr0dr1ry
61 60 sseq1d x=ydr0dr1rxk0drkdr0dr1ryk0drk
62 oveq2 x=y+1dr0dr1rx=dr0dr1ry+1
63 62 sseq1d x=y+1dr0dr1rxk0drkdr0dr1ry+1k0drk
64 oveq2 x=idr0dr1rx=dr0dr1ri
65 64 sseq1d x=idr0dr1rxk0drkdr0dr1rik0drk
66 ovex dr0V
67 ovex dr1V
68 66 67 unex dr0dr1V
69 relexp1g dr0dr1Vdr0dr1r1=dr0dr1
70 68 69 ax-mp dr0dr1r1=dr0dr1
71 0nn0 00
72 oveq2 k=0drk=dr0
73 72 ssiun2s 00dr0k0drk
74 71 73 ax-mp dr0k0drk
75 1nn0 10
76 oveq2 k=1drk=dr1
77 76 ssiun2s 10dr1k0drk
78 75 77 ax-mp dr1k0drk
79 74 78 unssi dr0dr1k0drk
80 70 79 eqsstri dr0dr1r1k0drk
81 simpl ydr0dr1ryk0drky
82 relexpsucnnr dr0dr1Vydr0dr1ry+1=dr0dr1rydr0dr1
83 68 81 82 sylancr ydr0dr1ryk0drkdr0dr1ry+1=dr0dr1rydr0dr1
84 coss1 dr0dr1ryk0drkdr0dr1rydr0dr1k0drkdr0dr1
85 coundi k0drkdr0dr1=k0drkdr0k0drkdr1
86 relexp0g dVdr0=Idomdrand
87 86 elv dr0=Idomdrand
88 87 coeq2i k0drkdr0=k0drkIdomdrand
89 coiun1 k0drkIdomdrand=k0drkIdomdrand
90 coires1 drkIdomdrand=drkdomdrand
91 90 a1i k0drkIdomdrand=drkdomdrand
92 91 iuneq2i k0drkIdomdrand=k0drkdomdrand
93 88 89 92 3eqtri k0drkdr0=k0drkdomdrand
94 ss2iun k0drkdomdranddrkk0drkdomdrandk0drk
95 resss drkdomdranddrk
96 95 a1i k0drkdomdranddrk
97 94 96 mprg k0drkdomdrandk0drk
98 93 97 eqsstri k0drkdr0k0drk
99 coiun1 k0drkdr1=k0drkdr1
100 iunss2 k0i0drkdr1drik0drkdr1i0dri
101 peano2nn0 k0k+10
102 sbcel1v [˙k+1/i]˙i0k+10
103 101 102 sylibr k0[˙k+1/i]˙i0
104 vex dV
105 relexpaddss k010dVdrkdr1drk+1
106 75 104 105 mp3an23 k0drkdr1drk+1
107 ovex k+1V
108 csbconstg k+1Vk+1/idrkdr1=drkdr1
109 107 108 ax-mp k+1/idrkdr1=drkdr1
110 csbov2g k+1Vk+1/idri=drk+1/ii
111 csbvarg k+1Vk+1/ii=k+1
112 111 oveq2d k+1Vdrk+1/ii=drk+1
113 110 112 eqtrd k+1Vk+1/idri=drk+1
114 107 113 ax-mp k+1/idri=drk+1
115 106 109 114 3sstr4g k0k+1/idrkdr1k+1/idri
116 sbcssg k+1V[˙k+1/i]˙drkdr1drik+1/idrkdr1k+1/idri
117 107 116 ax-mp [˙k+1/i]˙drkdr1drik+1/idrkdr1k+1/idri
118 115 117 sylibr k0[˙k+1/i]˙drkdr1dri
119 sbcan [˙k+1/i]˙i0drkdr1dri[˙k+1/i]˙i0[˙k+1/i]˙drkdr1dri
120 103 118 119 sylanbrc k0[˙k+1/i]˙i0drkdr1dri
121 120 spesbcd k0ii0drkdr1dri
122 df-rex i0drkdr1driii0drkdr1dri
123 121 122 sylibr k0i0drkdr1dri
124 100 123 mprg k0drkdr1i0dri
125 99 124 eqsstri k0drkdr1i0dri
126 oveq2 i=kdri=drk
127 126 cbviunv i0dri=k0drk
128 125 127 sseqtri k0drkdr1k0drk
129 98 128 unssi k0drkdr0k0drkdr1k0drk
130 85 129 eqsstri k0drkdr0dr1k0drk
131 84 130 sstrdi dr0dr1ryk0drkdr0dr1rydr0dr1k0drk
132 131 adantl ydr0dr1ryk0drkdr0dr1rydr0dr1k0drk
133 83 132 eqsstrd ydr0dr1ryk0drkdr0dr1ry+1k0drk
134 133 ex ydr0dr1ryk0drkdr0dr1ry+1k0drk
135 59 61 63 65 80 134 nnind idr0dr1rik0drk
136 57 135 eqsstrid ij01drjrik0drk
137 47 136 mprgbir ij01drjrik0drk
138 iuneq1 0=01k0drk=k01drk
139 18 138 ax-mp k0drk=k01drk
140 137 139 sseqtri ij01drjrik01drk
141 1 2 3 4 5 18 37 46 140 comptiunov2i t+r*=t*