Metamath Proof Explorer


Theorem cpmatinvcl

Description: The set of all constant polynomial matrices over a ring R is closed under inversion. (Contributed by AV, 17-Nov-2019) (Proof shortened by AV, 28-Nov-2019)

Ref Expression
Hypotheses cpmatsrngpmat.s S=NConstPolyMatR
cpmatsrngpmat.p P=Poly1R
cpmatsrngpmat.c C=NMatP
Assertion cpmatinvcl NFinRRingxSinvgCxS

Proof

Step Hyp Ref Expression
1 cpmatsrngpmat.s S=NConstPolyMatR
2 cpmatsrngpmat.p P=Poly1R
3 cpmatsrngpmat.c C=NMatP
4 eqid BaseC=BaseC
5 eqid BaseR=BaseR
6 eqid algScP=algScP
7 1 2 3 4 5 6 cpmatelimp2 NFinRRingxSxBaseCiNjNaBaseRixj=algScPa
8 2 ply1sca RRingR=ScalarP
9 8 adantl NFinRRingR=ScalarP
10 9 adantr NFinRRingaBaseRR=ScalarP
11 10 eqcomd NFinRRingaBaseRScalarP=R
12 11 fveq2d NFinRRingaBaseRinvgScalarP=invgR
13 12 fveq1d NFinRRingaBaseRinvgScalarPa=invgRa
14 ringgrp RRingRGrp
15 14 adantl NFinRRingRGrp
16 eqid invgR=invgR
17 5 16 grpinvcl RGrpaBaseRinvgRaBaseR
18 15 17 sylan NFinRRingaBaseRinvgRaBaseR
19 13 18 eqeltrd NFinRRingaBaseRinvgScalarPaBaseR
20 19 ad5ant14 NFinRRingxBaseCiNjNaBaseRixj=algScPainvgScalarPaBaseR
21 fveq2 c=invgScalarPaalgScPc=algScPinvgScalarPa
22 21 eqeq2d c=invgScalarPaiinvgCxj=algScPciinvgCxj=algScPinvgScalarPa
23 22 adantl NFinRRingxBaseCiNjNaBaseRixj=algScPac=invgScalarPaiinvgCxj=algScPciinvgCxj=algScPinvgScalarPa
24 2 ply1ring RRingPRing
25 24 ad3antlr NFinRRingxBaseCiNjNPRing
26 simplr NFinRRingxBaseCiNjNxBaseC
27 simpr NFinRRingxBaseCiNjNiNjN
28 25 26 27 3jca NFinRRingxBaseCiNjNPRingxBaseCiNjN
29 28 ad2antrr NFinRRingxBaseCiNjNaBaseRixj=algScPaPRingxBaseCiNjN
30 eqid invgP=invgP
31 eqid invgC=invgC
32 3 4 30 31 matinvgcell PRingxBaseCiNjNiinvgCxj=invgPixj
33 29 32 syl NFinRRingxBaseCiNjNaBaseRixj=algScPaiinvgCxj=invgPixj
34 fveq2 ixj=algScPainvgPixj=invgPalgScPa
35 eqid ScalarP=ScalarP
36 25 adantr NFinRRingxBaseCiNjNaBaseRPRing
37 2 ply1lmod RRingPLMod
38 37 ad3antlr NFinRRingxBaseCiNjNPLMod
39 38 adantr NFinRRingxBaseCiNjNaBaseRPLMod
40 6 35 36 39 asclghm NFinRRingxBaseCiNjNaBaseRalgScPScalarPGrpHomP
41 9 fveq2d NFinRRingBaseR=BaseScalarP
42 41 eleq2d NFinRRingaBaseRaBaseScalarP
43 42 biimpd NFinRRingaBaseRaBaseScalarP
44 43 ad2antrr NFinRRingxBaseCiNjNaBaseRaBaseScalarP
45 44 imp NFinRRingxBaseCiNjNaBaseRaBaseScalarP
46 eqid BaseScalarP=BaseScalarP
47 eqid invgScalarP=invgScalarP
48 46 47 30 ghminv algScPScalarPGrpHomPaBaseScalarPalgScPinvgScalarPa=invgPalgScPa
49 40 45 48 syl2anc NFinRRingxBaseCiNjNaBaseRalgScPinvgScalarPa=invgPalgScPa
50 49 eqcomd NFinRRingxBaseCiNjNaBaseRinvgPalgScPa=algScPinvgScalarPa
51 34 50 sylan9eqr NFinRRingxBaseCiNjNaBaseRixj=algScPainvgPixj=algScPinvgScalarPa
52 33 51 eqtrd NFinRRingxBaseCiNjNaBaseRixj=algScPaiinvgCxj=algScPinvgScalarPa
53 20 23 52 rspcedvd NFinRRingxBaseCiNjNaBaseRixj=algScPacBaseRiinvgCxj=algScPc
54 53 rexlimdva2 NFinRRingxBaseCiNjNaBaseRixj=algScPacBaseRiinvgCxj=algScPc
55 54 ralimdvva NFinRRingxBaseCiNjNaBaseRixj=algScPaiNjNcBaseRiinvgCxj=algScPc
56 55 expimpd NFinRRingxBaseCiNjNaBaseRixj=algScPaiNjNcBaseRiinvgCxj=algScPc
57 7 56 syld NFinRRingxSiNjNcBaseRiinvgCxj=algScPc
58 57 imp NFinRRingxSiNjNcBaseRiinvgCxj=algScPc
59 simpll NFinRRingxSNFin
60 simplr NFinRRingxSRRing
61 2 3 pmatring NFinRRingCRing
62 ringgrp CRingCGrp
63 61 62 syl NFinRRingCGrp
64 63 adantr NFinRRingxSCGrp
65 1 2 3 4 cpmatpmat NFinRRingxSxBaseC
66 65 3expa NFinRRingxSxBaseC
67 4 31 grpinvcl CGrpxBaseCinvgCxBaseC
68 64 66 67 syl2anc NFinRRingxSinvgCxBaseC
69 1 2 3 4 5 6 cpmatel2 NFinRRinginvgCxBaseCinvgCxSiNjNcBaseRiinvgCxj=algScPc
70 59 60 68 69 syl3anc NFinRRingxSinvgCxSiNjNcBaseRiinvgCxj=algScPc
71 58 70 mpbird NFinRRingxSinvgCxS
72 71 ralrimiva NFinRRingxSinvgCxS