Metamath Proof Explorer


Theorem cvmlift2lem6

Description: Lemma for cvmlift2 . (Contributed by Mario Carneiro, 7-May-2015)

Ref Expression
Hypotheses cvmlift2.b B=C
cvmlift2.f φFCCovMapJ
cvmlift2.g φGII×tIICnJ
cvmlift2.p φPB
cvmlift2.i φFP=0G0
cvmlift2.h H=ιfIICnC|Ff=z01zG0f0=P
cvmlift2.k K=x01,y01ιfIICnC|Ff=z01xGzf0=Hxy
Assertion cvmlift2lem6 φX01KX×01II×tII𝑡X×01CnC

Proof

Step Hyp Ref Expression
1 cvmlift2.b B=C
2 cvmlift2.f φFCCovMapJ
3 cvmlift2.g φGII×tIICnJ
4 cvmlift2.p φPB
5 cvmlift2.i φFP=0G0
6 cvmlift2.h H=ιfIICnC|Ff=z01zG0f0=P
7 cvmlift2.k K=x01,y01ιfIICnC|Ff=z01xGzf0=Hxy
8 1 2 3 4 5 6 7 cvmlift2lem5 φK:01×01B
9 8 adantr φX01K:01×01B
10 9 ffnd φX01KFn01×01
11 fnov KFn01×01K=u01,v01uKv
12 10 11 sylib φX01K=u01,v01uKv
13 12 reseq1d φX01KX×01=u01,v01uKvX×01
14 simpr φX01X01
15 14 snssd φX01X01
16 ssid 0101
17 resmpo X010101u01,v01uKvX×01=uX,v01uKv
18 15 16 17 sylancl φX01u01,v01uKvX×01=uX,v01uKv
19 elsni uXu=X
20 19 3ad2ant2 φX01uXv01u=X
21 20 oveq1d φX01uXv01uKv=XKv
22 simp1r φX01uXv01X01
23 simp3 φX01uXv01v01
24 1 2 3 4 5 6 7 cvmlift2lem4 X01v01XKv=ιfIICnC|Ff=z01XGzf0=HXv
25 22 23 24 syl2anc φX01uXv01XKv=ιfIICnC|Ff=z01XGzf0=HXv
26 21 25 eqtrd φX01uXv01uKv=ιfIICnC|Ff=z01XGzf0=HXv
27 26 mpoeq3dva φX01uX,v01uKv=uX,v01ιfIICnC|Ff=z01XGzf0=HXv
28 18 27 eqtrd φX01u01,v01uKvX×01=uX,v01ιfIICnC|Ff=z01XGzf0=HXv
29 13 28 eqtrd φX01KX×01=uX,v01ιfIICnC|Ff=z01XGzf0=HXv
30 eqid II𝑡X=II𝑡X
31 iitopon IITopOn01
32 31 a1i φX01IITopOn01
33 eqid II𝑡01=II𝑡01
34 16 a1i φX010101
35 32 32 cnmpt2nd φX01u01,v01vII×tIICnII
36 eqid ιfIICnC|Ff=z01XGzf0=HX=ιfIICnC|Ff=z01XGzf0=HX
37 1 2 3 4 5 6 36 cvmlift2lem3 φX01ιfIICnC|Ff=z01XGzf0=HXIICnCFιfIICnC|Ff=z01XGzf0=HX=z01XGzιfIICnC|Ff=z01XGzf0=HX0=HX
38 37 simp1d φX01ιfIICnC|Ff=z01XGzf0=HXIICnC
39 32 32 35 38 cnmpt21f φX01u01,v01ιfIICnC|Ff=z01XGzf0=HXvII×tIICnC
40 30 32 15 33 32 34 39 cnmpt2res φX01uX,v01ιfIICnC|Ff=z01XGzf0=HXvII𝑡X×tII𝑡01CnC
41 iitop IITop
42 snex XV
43 ovex 01V
44 txrest IITopIITopXV01VII×tII𝑡X×01=II𝑡X×tII𝑡01
45 41 41 42 43 44 mp4an II×tII𝑡X×01=II𝑡X×tII𝑡01
46 45 oveq1i II×tII𝑡X×01CnC=II𝑡X×tII𝑡01CnC
47 40 46 eleqtrrdi φX01uX,v01ιfIICnC|Ff=z01XGzf0=HXvII×tII𝑡X×01CnC
48 29 47 eqeltrd φX01KX×01II×tII𝑡X×01CnC