Metamath Proof Explorer


Theorem cvmliftlem5

Description: Lemma for cvmlift . Definition of Q at a successor. This is a function defined on W as ` ``' ( T |`I ) o. G where I is the unique covering set of 2nd( TM ) that contains Q ( M - 1 ) evaluated at the last defined point, namely ( M - 1 ) / N (note that for M = 1 this is using the seed value Q ( 0 ) ( 0 ) = P ). (Contributed by Mario Carneiro, 15-Feb-2015)

Ref Expression
Hypotheses cvmliftlem.1 S=kJs𝒫C|s=F-1kusvsuuv=FuC𝑡uHomeoJ𝑡k
cvmliftlem.b B=C
cvmliftlem.x X=J
cvmliftlem.f φFCCovMapJ
cvmliftlem.g φGIICnJ
cvmliftlem.p φPB
cvmliftlem.e φFP=G0
cvmliftlem.n φN
cvmliftlem.t φT:1NjJj×Sj
cvmliftlem.a φk1NGk1NkN1stTk
cvmliftlem.l L=topGenran.
cvmliftlem.q Q=seq0xV,mzm1NmNFιb2ndTm|xm1Nb-1GzI00P
cvmliftlem5.3 W=M1NMN
Assertion cvmliftlem5 φMQM=zWFιb2ndTM|QM1M1Nb-1Gz

Proof

Step Hyp Ref Expression
1 cvmliftlem.1 S=kJs𝒫C|s=F-1kusvsuuv=FuC𝑡uHomeoJ𝑡k
2 cvmliftlem.b B=C
3 cvmliftlem.x X=J
4 cvmliftlem.f φFCCovMapJ
5 cvmliftlem.g φGIICnJ
6 cvmliftlem.p φPB
7 cvmliftlem.e φFP=G0
8 cvmliftlem.n φN
9 cvmliftlem.t φT:1NjJj×Sj
10 cvmliftlem.a φk1NGk1NkN1stTk
11 cvmliftlem.l L=topGenran.
12 cvmliftlem.q Q=seq0xV,mzm1NmNFιb2ndTm|xm1Nb-1GzI00P
13 cvmliftlem5.3 W=M1NMN
14 0z 0
15 simpr φMM
16 nnuz =1
17 1e0p1 1=0+1
18 17 fveq2i 1=0+1
19 16 18 eqtri =0+1
20 15 19 eleqtrdi φMM0+1
21 seqm1 0M0+1seq0xV,mzm1NmNFιb2ndTm|xm1Nb-1GzI00PM=seq0xV,mzm1NmNFιb2ndTm|xm1Nb-1GzI00PM1xV,mzm1NmNFιb2ndTm|xm1Nb-1GzI00PM
22 14 20 21 sylancr φMseq0xV,mzm1NmNFιb2ndTm|xm1Nb-1GzI00PM=seq0xV,mzm1NmNFιb2ndTm|xm1Nb-1GzI00PM1xV,mzm1NmNFιb2ndTm|xm1Nb-1GzI00PM
23 12 fveq1i QM=seq0xV,mzm1NmNFιb2ndTm|xm1Nb-1GzI00PM
24 12 fveq1i QM1=seq0xV,mzm1NmNFιb2ndTm|xm1Nb-1GzI00PM1
25 24 oveq1i QM1xV,mzm1NmNFιb2ndTm|xm1Nb-1GzI00PM=seq0xV,mzm1NmNFιb2ndTm|xm1Nb-1GzI00PM1xV,mzm1NmNFιb2ndTm|xm1Nb-1GzI00PM
26 22 23 25 3eqtr4g φMQM=QM1xV,mzm1NmNFιb2ndTm|xm1Nb-1GzI00PM
27 0nnn ¬0
28 disjsn 0=¬0
29 27 28 mpbir 0=
30 fnresi IFn
31 c0ex 0V
32 snex 0PV
33 31 32 fnsn 00PFn0
34 fvun1 IFn00PFn00=MI00PM=IM
35 30 33 34 mp3an12 0=MI00PM=IM
36 29 15 35 sylancr φMI00PM=IM
37 fvresi MIM=M
38 37 adantl φMIM=M
39 36 38 eqtrd φMI00PM=M
40 39 oveq2d φMQM1xV,mzm1NmNFιb2ndTm|xm1Nb-1GzI00PM=QM1xV,mzm1NmNFιb2ndTm|xm1Nb-1GzM
41 fvexd φQM1V
42 simpr x=QM1m=Mm=M
43 42 oveq1d x=QM1m=Mm1=M1
44 43 oveq1d x=QM1m=Mm1N=M1N
45 42 oveq1d x=QM1m=MmN=MN
46 44 45 oveq12d x=QM1m=Mm1NmN=M1NMN
47 46 13 eqtr4di x=QM1m=Mm1NmN=W
48 42 fveq2d x=QM1m=MTm=TM
49 48 fveq2d x=QM1m=M2ndTm=2ndTM
50 simpl x=QM1m=Mx=QM1
51 50 44 fveq12d x=QM1m=Mxm1N=QM1M1N
52 51 eleq1d x=QM1m=Mxm1NbQM1M1Nb
53 49 52 riotaeqbidv x=QM1m=Mιb2ndTm|xm1Nb=ιb2ndTM|QM1M1Nb
54 53 reseq2d x=QM1m=MFιb2ndTm|xm1Nb=Fιb2ndTM|QM1M1Nb
55 54 cnveqd x=QM1m=MFιb2ndTm|xm1Nb-1=Fιb2ndTM|QM1M1Nb-1
56 55 fveq1d x=QM1m=MFιb2ndTm|xm1Nb-1Gz=Fιb2ndTM|QM1M1Nb-1Gz
57 47 56 mpteq12dv x=QM1m=Mzm1NmNFιb2ndTm|xm1Nb-1Gz=zWFιb2ndTM|QM1M1Nb-1Gz
58 eqid xV,mzm1NmNFιb2ndTm|xm1Nb-1Gz=xV,mzm1NmNFιb2ndTm|xm1Nb-1Gz
59 ovex M1NMNV
60 13 59 eqeltri WV
61 60 mptex zWFιb2ndTM|QM1M1Nb-1GzV
62 57 58 61 ovmpoa QM1VMQM1xV,mzm1NmNFιb2ndTm|xm1Nb-1GzM=zWFιb2ndTM|QM1M1Nb-1Gz
63 41 62 sylan φMQM1xV,mzm1NmNFιb2ndTm|xm1Nb-1GzM=zWFιb2ndTM|QM1M1Nb-1Gz
64 26 40 63 3eqtrd φMQM=zWFιb2ndTM|QM1M1Nb-1Gz