Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Norm Megill
Hilbert lattices
cvratlem
Next ⟩
cvrat
Metamath Proof Explorer
Ascii
Unicode
Theorem
cvratlem
Description:
Lemma for
cvrat
. (
atcvatlem
analog.)
(Contributed by
NM
, 22-Nov-2011)
Ref
Expression
Hypotheses
cvrat.b
⊢
B
=
Base
K
cvrat.s
⊢
<
˙
=
<
K
cvrat.j
⊢
∨
˙
=
join
K
cvrat.z
⊢
0
˙
=
0.
K
cvrat.a
⊢
A
=
Atoms
K
Assertion
cvratlem
⊢
K
∈
HL
∧
X
∈
B
∧
P
∈
A
∧
Q
∈
A
∧
X
≠
0
˙
∧
X
<
˙
P
∨
˙
Q
→
¬
P
≤
K
X
→
X
∈
A
Proof
Step
Hyp
Ref
Expression
1
cvrat.b
⊢
B
=
Base
K
2
cvrat.s
⊢
<
˙
=
<
K
3
cvrat.j
⊢
∨
˙
=
join
K
4
cvrat.z
⊢
0
˙
=
0.
K
5
cvrat.a
⊢
A
=
Atoms
K
6
hlatl
⊢
K
∈
HL
→
K
∈
AtLat
7
6
adantr
⊢
K
∈
HL
∧
X
∈
B
∧
P
∈
A
∧
Q
∈
A
→
K
∈
AtLat
8
simpr1
⊢
K
∈
HL
∧
X
∈
B
∧
P
∈
A
∧
Q
∈
A
→
X
∈
B
9
eqid
⊢
≤
K
=
≤
K
10
1
9
4
5
atlex
⊢
K
∈
AtLat
∧
X
∈
B
∧
X
≠
0
˙
→
∃
r
∈
A
r
≤
K
X
11
10
3expia
⊢
K
∈
AtLat
∧
X
∈
B
→
X
≠
0
˙
→
∃
r
∈
A
r
≤
K
X
12
7
8
11
syl2anc
⊢
K
∈
HL
∧
X
∈
B
∧
P
∈
A
∧
Q
∈
A
→
X
≠
0
˙
→
∃
r
∈
A
r
≤
K
X
13
6
3ad2ant1
⊢
K
∈
HL
∧
X
∈
B
∧
P
∈
A
∧
Q
∈
A
∧
r
∈
A
→
K
∈
AtLat
14
simp22
⊢
K
∈
HL
∧
X
∈
B
∧
P
∈
A
∧
Q
∈
A
∧
r
∈
A
→
P
∈
A
15
simp3
⊢
K
∈
HL
∧
X
∈
B
∧
P
∈
A
∧
Q
∈
A
∧
r
∈
A
→
r
∈
A
16
9
5
atcmp
⊢
K
∈
AtLat
∧
P
∈
A
∧
r
∈
A
→
P
≤
K
r
↔
P
=
r
17
13
14
15
16
syl3anc
⊢
K
∈
HL
∧
X
∈
B
∧
P
∈
A
∧
Q
∈
A
∧
r
∈
A
→
P
≤
K
r
↔
P
=
r
18
breq1
⊢
P
=
r
→
P
≤
K
X
↔
r
≤
K
X
19
18
biimprd
⊢
P
=
r
→
r
≤
K
X
→
P
≤
K
X
20
17
19
syl6bi
⊢
K
∈
HL
∧
X
∈
B
∧
P
∈
A
∧
Q
∈
A
∧
r
∈
A
→
P
≤
K
r
→
r
≤
K
X
→
P
≤
K
X
21
20
com23
⊢
K
∈
HL
∧
X
∈
B
∧
P
∈
A
∧
Q
∈
A
∧
r
∈
A
→
r
≤
K
X
→
P
≤
K
r
→
P
≤
K
X
22
con3
⊢
P
≤
K
r
→
P
≤
K
X
→
¬
P
≤
K
X
→
¬
P
≤
K
r
23
21
22
syl6
⊢
K
∈
HL
∧
X
∈
B
∧
P
∈
A
∧
Q
∈
A
∧
r
∈
A
→
r
≤
K
X
→
¬
P
≤
K
X
→
¬
P
≤
K
r
24
23
impd
⊢
K
∈
HL
∧
X
∈
B
∧
P
∈
A
∧
Q
∈
A
∧
r
∈
A
→
r
≤
K
X
∧
¬
P
≤
K
X
→
¬
P
≤
K
r
25
simp1
⊢
K
∈
HL
∧
X
∈
B
∧
P
∈
A
∧
Q
∈
A
∧
r
∈
A
→
K
∈
HL
26
1
5
atbase
⊢
r
∈
A
→
r
∈
B
27
26
3ad2ant3
⊢
K
∈
HL
∧
X
∈
B
∧
P
∈
A
∧
Q
∈
A
∧
r
∈
A
→
r
∈
B
28
eqid
⊢
⋖
K
=
⋖
K
29
1
9
3
28
5
cvr1
⊢
K
∈
HL
∧
r
∈
B
∧
P
∈
A
→
¬
P
≤
K
r
↔
r
⋖
K
r
∨
˙
P
30
25
27
14
29
syl3anc
⊢
K
∈
HL
∧
X
∈
B
∧
P
∈
A
∧
Q
∈
A
∧
r
∈
A
→
¬
P
≤
K
r
↔
r
⋖
K
r
∨
˙
P
31
24
30
sylibd
⊢
K
∈
HL
∧
X
∈
B
∧
P
∈
A
∧
Q
∈
A
∧
r
∈
A
→
r
≤
K
X
∧
¬
P
≤
K
X
→
r
⋖
K
r
∨
˙
P
32
31
imp
⊢
K
∈
HL
∧
X
∈
B
∧
P
∈
A
∧
Q
∈
A
∧
r
∈
A
∧
r
≤
K
X
∧
¬
P
≤
K
X
→
r
⋖
K
r
∨
˙
P
33
hllat
⊢
K
∈
HL
→
K
∈
Lat
34
33
3ad2ant1
⊢
K
∈
HL
∧
X
∈
B
∧
P
∈
A
∧
Q
∈
A
∧
r
∈
A
→
K
∈
Lat
35
1
5
atbase
⊢
P
∈
A
→
P
∈
B
36
14
35
syl
⊢
K
∈
HL
∧
X
∈
B
∧
P
∈
A
∧
Q
∈
A
∧
r
∈
A
→
P
∈
B
37
1
3
latjcom
⊢
K
∈
Lat
∧
P
∈
B
∧
r
∈
B
→
P
∨
˙
r
=
r
∨
˙
P
38
34
36
27
37
syl3anc
⊢
K
∈
HL
∧
X
∈
B
∧
P
∈
A
∧
Q
∈
A
∧
r
∈
A
→
P
∨
˙
r
=
r
∨
˙
P
39
38
adantr
⊢
K
∈
HL
∧
X
∈
B
∧
P
∈
A
∧
Q
∈
A
∧
r
∈
A
∧
r
≤
K
X
∧
¬
P
≤
K
X
→
P
∨
˙
r
=
r
∨
˙
P
40
32
39
breqtrrd
⊢
K
∈
HL
∧
X
∈
B
∧
P
∈
A
∧
Q
∈
A
∧
r
∈
A
∧
r
≤
K
X
∧
¬
P
≤
K
X
→
r
⋖
K
P
∨
˙
r
41
40
adantrrl
⊢
K
∈
HL
∧
X
∈
B
∧
P
∈
A
∧
Q
∈
A
∧
r
∈
A
∧
r
≤
K
X
∧
X
<
˙
P
∨
˙
Q
∧
¬
P
≤
K
X
→
r
⋖
K
P
∨
˙
r
42
9
3
5
hlatlej1
⊢
K
∈
HL
∧
P
∈
A
∧
r
∈
A
→
P
≤
K
P
∨
˙
r
43
25
14
15
42
syl3anc
⊢
K
∈
HL
∧
X
∈
B
∧
P
∈
A
∧
Q
∈
A
∧
r
∈
A
→
P
≤
K
P
∨
˙
r
44
43
adantr
⊢
K
∈
HL
∧
X
∈
B
∧
P
∈
A
∧
Q
∈
A
∧
r
∈
A
∧
r
≤
K
X
∧
X
<
˙
P
∨
˙
Q
∧
¬
P
≤
K
X
→
P
≤
K
P
∨
˙
r
45
9
5
atcmp
⊢
K
∈
AtLat
∧
r
∈
A
∧
P
∈
A
→
r
≤
K
P
↔
r
=
P
46
13
15
14
45
syl3anc
⊢
K
∈
HL
∧
X
∈
B
∧
P
∈
A
∧
Q
∈
A
∧
r
∈
A
→
r
≤
K
P
↔
r
=
P
47
breq1
⊢
r
=
P
→
r
≤
K
X
↔
P
≤
K
X
48
47
biimpd
⊢
r
=
P
→
r
≤
K
X
→
P
≤
K
X
49
46
48
syl6bi
⊢
K
∈
HL
∧
X
∈
B
∧
P
∈
A
∧
Q
∈
A
∧
r
∈
A
→
r
≤
K
P
→
r
≤
K
X
→
P
≤
K
X
50
49
com23
⊢
K
∈
HL
∧
X
∈
B
∧
P
∈
A
∧
Q
∈
A
∧
r
∈
A
→
r
≤
K
X
→
r
≤
K
P
→
P
≤
K
X
51
con3
⊢
r
≤
K
P
→
P
≤
K
X
→
¬
P
≤
K
X
→
¬
r
≤
K
P
52
50
51
syl6
⊢
K
∈
HL
∧
X
∈
B
∧
P
∈
A
∧
Q
∈
A
∧
r
∈
A
→
r
≤
K
X
→
¬
P
≤
K
X
→
¬
r
≤
K
P
53
52
imp32
⊢
K
∈
HL
∧
X
∈
B
∧
P
∈
A
∧
Q
∈
A
∧
r
∈
A
∧
r
≤
K
X
∧
¬
P
≤
K
X
→
¬
r
≤
K
P
54
53
adantrrl
⊢
K
∈
HL
∧
X
∈
B
∧
P
∈
A
∧
Q
∈
A
∧
r
∈
A
∧
r
≤
K
X
∧
X
<
˙
P
∨
˙
Q
∧
¬
P
≤
K
X
→
¬
r
≤
K
P
55
simprl
⊢
K
∈
HL
∧
X
∈
B
∧
P
∈
A
∧
Q
∈
A
∧
r
∈
A
∧
r
≤
K
X
∧
X
<
˙
P
∨
˙
Q
→
r
≤
K
X
56
simp21
⊢
K
∈
HL
∧
X
∈
B
∧
P
∈
A
∧
Q
∈
A
∧
r
∈
A
→
X
∈
B
57
simp23
⊢
K
∈
HL
∧
X
∈
B
∧
P
∈
A
∧
Q
∈
A
∧
r
∈
A
→
Q
∈
A
58
1
5
atbase
⊢
Q
∈
A
→
Q
∈
B
59
57
58
syl
⊢
K
∈
HL
∧
X
∈
B
∧
P
∈
A
∧
Q
∈
A
∧
r
∈
A
→
Q
∈
B
60
1
3
latjcl
⊢
K
∈
Lat
∧
P
∈
B
∧
Q
∈
B
→
P
∨
˙
Q
∈
B
61
34
36
59
60
syl3anc
⊢
K
∈
HL
∧
X
∈
B
∧
P
∈
A
∧
Q
∈
A
∧
r
∈
A
→
P
∨
˙
Q
∈
B
62
25
56
61
3jca
⊢
K
∈
HL
∧
X
∈
B
∧
P
∈
A
∧
Q
∈
A
∧
r
∈
A
→
K
∈
HL
∧
X
∈
B
∧
P
∨
˙
Q
∈
B
63
9
2
pltle
⊢
K
∈
HL
∧
X
∈
B
∧
P
∨
˙
Q
∈
B
→
X
<
˙
P
∨
˙
Q
→
X
≤
K
P
∨
˙
Q
64
63
imp
⊢
K
∈
HL
∧
X
∈
B
∧
P
∨
˙
Q
∈
B
∧
X
<
˙
P
∨
˙
Q
→
X
≤
K
P
∨
˙
Q
65
62
64
sylan
⊢
K
∈
HL
∧
X
∈
B
∧
P
∈
A
∧
Q
∈
A
∧
r
∈
A
∧
X
<
˙
P
∨
˙
Q
→
X
≤
K
P
∨
˙
Q
66
65
adantrl
⊢
K
∈
HL
∧
X
∈
B
∧
P
∈
A
∧
Q
∈
A
∧
r
∈
A
∧
r
≤
K
X
∧
X
<
˙
P
∨
˙
Q
→
X
≤
K
P
∨
˙
Q
67
hlpos
⊢
K
∈
HL
→
K
∈
Poset
68
67
3ad2ant1
⊢
K
∈
HL
∧
X
∈
B
∧
P
∈
A
∧
Q
∈
A
∧
r
∈
A
→
K
∈
Poset
69
1
9
postr
⊢
K
∈
Poset
∧
r
∈
B
∧
X
∈
B
∧
P
∨
˙
Q
∈
B
→
r
≤
K
X
∧
X
≤
K
P
∨
˙
Q
→
r
≤
K
P
∨
˙
Q
70
68
27
56
61
69
syl13anc
⊢
K
∈
HL
∧
X
∈
B
∧
P
∈
A
∧
Q
∈
A
∧
r
∈
A
→
r
≤
K
X
∧
X
≤
K
P
∨
˙
Q
→
r
≤
K
P
∨
˙
Q
71
70
adantr
⊢
K
∈
HL
∧
X
∈
B
∧
P
∈
A
∧
Q
∈
A
∧
r
∈
A
∧
r
≤
K
X
∧
X
<
˙
P
∨
˙
Q
→
r
≤
K
X
∧
X
≤
K
P
∨
˙
Q
→
r
≤
K
P
∨
˙
Q
72
55
66
71
mp2and
⊢
K
∈
HL
∧
X
∈
B
∧
P
∈
A
∧
Q
∈
A
∧
r
∈
A
∧
r
≤
K
X
∧
X
<
˙
P
∨
˙
Q
→
r
≤
K
P
∨
˙
Q
73
72
adantrrr
⊢
K
∈
HL
∧
X
∈
B
∧
P
∈
A
∧
Q
∈
A
∧
r
∈
A
∧
r
≤
K
X
∧
X
<
˙
P
∨
˙
Q
∧
¬
P
≤
K
X
→
r
≤
K
P
∨
˙
Q
74
1
9
3
5
hlexch1
⊢
K
∈
HL
∧
r
∈
A
∧
Q
∈
A
∧
P
∈
B
∧
¬
r
≤
K
P
→
r
≤
K
P
∨
˙
Q
→
Q
≤
K
P
∨
˙
r
75
74
3expia
⊢
K
∈
HL
∧
r
∈
A
∧
Q
∈
A
∧
P
∈
B
→
¬
r
≤
K
P
→
r
≤
K
P
∨
˙
Q
→
Q
≤
K
P
∨
˙
r
76
75
impd
⊢
K
∈
HL
∧
r
∈
A
∧
Q
∈
A
∧
P
∈
B
→
¬
r
≤
K
P
∧
r
≤
K
P
∨
˙
Q
→
Q
≤
K
P
∨
˙
r
77
25
15
57
36
76
syl13anc
⊢
K
∈
HL
∧
X
∈
B
∧
P
∈
A
∧
Q
∈
A
∧
r
∈
A
→
¬
r
≤
K
P
∧
r
≤
K
P
∨
˙
Q
→
Q
≤
K
P
∨
˙
r
78
77
adantr
⊢
K
∈
HL
∧
X
∈
B
∧
P
∈
A
∧
Q
∈
A
∧
r
∈
A
∧
r
≤
K
X
∧
X
<
˙
P
∨
˙
Q
∧
¬
P
≤
K
X
→
¬
r
≤
K
P
∧
r
≤
K
P
∨
˙
Q
→
Q
≤
K
P
∨
˙
r
79
54
73
78
mp2and
⊢
K
∈
HL
∧
X
∈
B
∧
P
∈
A
∧
Q
∈
A
∧
r
∈
A
∧
r
≤
K
X
∧
X
<
˙
P
∨
˙
Q
∧
¬
P
≤
K
X
→
Q
≤
K
P
∨
˙
r
80
1
3
latjcl
⊢
K
∈
Lat
∧
P
∈
B
∧
r
∈
B
→
P
∨
˙
r
∈
B
81
34
36
27
80
syl3anc
⊢
K
∈
HL
∧
X
∈
B
∧
P
∈
A
∧
Q
∈
A
∧
r
∈
A
→
P
∨
˙
r
∈
B
82
1
9
3
latjle12
⊢
K
∈
Lat
∧
P
∈
B
∧
Q
∈
B
∧
P
∨
˙
r
∈
B
→
P
≤
K
P
∨
˙
r
∧
Q
≤
K
P
∨
˙
r
↔
P
∨
˙
Q
≤
K
P
∨
˙
r
83
34
36
59
81
82
syl13anc
⊢
K
∈
HL
∧
X
∈
B
∧
P
∈
A
∧
Q
∈
A
∧
r
∈
A
→
P
≤
K
P
∨
˙
r
∧
Q
≤
K
P
∨
˙
r
↔
P
∨
˙
Q
≤
K
P
∨
˙
r
84
83
adantr
⊢
K
∈
HL
∧
X
∈
B
∧
P
∈
A
∧
Q
∈
A
∧
r
∈
A
∧
r
≤
K
X
∧
X
<
˙
P
∨
˙
Q
∧
¬
P
≤
K
X
→
P
≤
K
P
∨
˙
r
∧
Q
≤
K
P
∨
˙
r
↔
P
∨
˙
Q
≤
K
P
∨
˙
r
85
44
79
84
mpbi2and
⊢
K
∈
HL
∧
X
∈
B
∧
P
∈
A
∧
Q
∈
A
∧
r
∈
A
∧
r
≤
K
X
∧
X
<
˙
P
∨
˙
Q
∧
¬
P
≤
K
X
→
P
∨
˙
Q
≤
K
P
∨
˙
r
86
9
3
5
hlatlej1
⊢
K
∈
HL
∧
P
∈
A
∧
Q
∈
A
→
P
≤
K
P
∨
˙
Q
87
25
14
57
86
syl3anc
⊢
K
∈
HL
∧
X
∈
B
∧
P
∈
A
∧
Q
∈
A
∧
r
∈
A
→
P
≤
K
P
∨
˙
Q
88
87
adantr
⊢
K
∈
HL
∧
X
∈
B
∧
P
∈
A
∧
Q
∈
A
∧
r
∈
A
∧
r
≤
K
X
∧
X
<
˙
P
∨
˙
Q
∧
¬
P
≤
K
X
→
P
≤
K
P
∨
˙
Q
89
1
9
3
latjle12
⊢
K
∈
Lat
∧
P
∈
B
∧
r
∈
B
∧
P
∨
˙
Q
∈
B
→
P
≤
K
P
∨
˙
Q
∧
r
≤
K
P
∨
˙
Q
↔
P
∨
˙
r
≤
K
P
∨
˙
Q
90
34
36
27
61
89
syl13anc
⊢
K
∈
HL
∧
X
∈
B
∧
P
∈
A
∧
Q
∈
A
∧
r
∈
A
→
P
≤
K
P
∨
˙
Q
∧
r
≤
K
P
∨
˙
Q
↔
P
∨
˙
r
≤
K
P
∨
˙
Q
91
90
adantr
⊢
K
∈
HL
∧
X
∈
B
∧
P
∈
A
∧
Q
∈
A
∧
r
∈
A
∧
r
≤
K
X
∧
X
<
˙
P
∨
˙
Q
∧
¬
P
≤
K
X
→
P
≤
K
P
∨
˙
Q
∧
r
≤
K
P
∨
˙
Q
↔
P
∨
˙
r
≤
K
P
∨
˙
Q
92
88
73
91
mpbi2and
⊢
K
∈
HL
∧
X
∈
B
∧
P
∈
A
∧
Q
∈
A
∧
r
∈
A
∧
r
≤
K
X
∧
X
<
˙
P
∨
˙
Q
∧
¬
P
≤
K
X
→
P
∨
˙
r
≤
K
P
∨
˙
Q
93
34
61
81
3jca
⊢
K
∈
HL
∧
X
∈
B
∧
P
∈
A
∧
Q
∈
A
∧
r
∈
A
→
K
∈
Lat
∧
P
∨
˙
Q
∈
B
∧
P
∨
˙
r
∈
B
94
93
adantr
⊢
K
∈
HL
∧
X
∈
B
∧
P
∈
A
∧
Q
∈
A
∧
r
∈
A
∧
r
≤
K
X
∧
X
<
˙
P
∨
˙
Q
∧
¬
P
≤
K
X
→
K
∈
Lat
∧
P
∨
˙
Q
∈
B
∧
P
∨
˙
r
∈
B
95
1
9
latasymb
⊢
K
∈
Lat
∧
P
∨
˙
Q
∈
B
∧
P
∨
˙
r
∈
B
→
P
∨
˙
Q
≤
K
P
∨
˙
r
∧
P
∨
˙
r
≤
K
P
∨
˙
Q
↔
P
∨
˙
Q
=
P
∨
˙
r
96
94
95
syl
⊢
K
∈
HL
∧
X
∈
B
∧
P
∈
A
∧
Q
∈
A
∧
r
∈
A
∧
r
≤
K
X
∧
X
<
˙
P
∨
˙
Q
∧
¬
P
≤
K
X
→
P
∨
˙
Q
≤
K
P
∨
˙
r
∧
P
∨
˙
r
≤
K
P
∨
˙
Q
↔
P
∨
˙
Q
=
P
∨
˙
r
97
85
92
96
mpbi2and
⊢
K
∈
HL
∧
X
∈
B
∧
P
∈
A
∧
Q
∈
A
∧
r
∈
A
∧
r
≤
K
X
∧
X
<
˙
P
∨
˙
Q
∧
¬
P
≤
K
X
→
P
∨
˙
Q
=
P
∨
˙
r
98
breq2
⊢
P
∨
˙
Q
=
P
∨
˙
r
→
X
<
˙
P
∨
˙
Q
↔
X
<
˙
P
∨
˙
r
99
98
biimpcd
⊢
X
<
˙
P
∨
˙
Q
→
P
∨
˙
Q
=
P
∨
˙
r
→
X
<
˙
P
∨
˙
r
100
99
adantr
⊢
X
<
˙
P
∨
˙
Q
∧
¬
P
≤
K
X
→
P
∨
˙
Q
=
P
∨
˙
r
→
X
<
˙
P
∨
˙
r
101
100
ad2antll
⊢
K
∈
HL
∧
X
∈
B
∧
P
∈
A
∧
Q
∈
A
∧
r
∈
A
∧
r
≤
K
X
∧
X
<
˙
P
∨
˙
Q
∧
¬
P
≤
K
X
→
P
∨
˙
Q
=
P
∨
˙
r
→
X
<
˙
P
∨
˙
r
102
97
101
mpd
⊢
K
∈
HL
∧
X
∈
B
∧
P
∈
A
∧
Q
∈
A
∧
r
∈
A
∧
r
≤
K
X
∧
X
<
˙
P
∨
˙
Q
∧
¬
P
≤
K
X
→
X
<
˙
P
∨
˙
r
103
1
9
2
28
cvrnbtwn3
⊢
K
∈
Poset
∧
r
∈
B
∧
P
∨
˙
r
∈
B
∧
X
∈
B
∧
r
⋖
K
P
∨
˙
r
→
r
≤
K
X
∧
X
<
˙
P
∨
˙
r
↔
r
=
X
104
103
biimpd
⊢
K
∈
Poset
∧
r
∈
B
∧
P
∨
˙
r
∈
B
∧
X
∈
B
∧
r
⋖
K
P
∨
˙
r
→
r
≤
K
X
∧
X
<
˙
P
∨
˙
r
→
r
=
X
105
104
3expia
⊢
K
∈
Poset
∧
r
∈
B
∧
P
∨
˙
r
∈
B
∧
X
∈
B
→
r
⋖
K
P
∨
˙
r
→
r
≤
K
X
∧
X
<
˙
P
∨
˙
r
→
r
=
X
106
68
27
81
56
105
syl13anc
⊢
K
∈
HL
∧
X
∈
B
∧
P
∈
A
∧
Q
∈
A
∧
r
∈
A
→
r
⋖
K
P
∨
˙
r
→
r
≤
K
X
∧
X
<
˙
P
∨
˙
r
→
r
=
X
107
106
exp4a
⊢
K
∈
HL
∧
X
∈
B
∧
P
∈
A
∧
Q
∈
A
∧
r
∈
A
→
r
⋖
K
P
∨
˙
r
→
r
≤
K
X
→
X
<
˙
P
∨
˙
r
→
r
=
X
108
107
com23
⊢
K
∈
HL
∧
X
∈
B
∧
P
∈
A
∧
Q
∈
A
∧
r
∈
A
→
r
≤
K
X
→
r
⋖
K
P
∨
˙
r
→
X
<
˙
P
∨
˙
r
→
r
=
X
109
108
imp4b
⊢
K
∈
HL
∧
X
∈
B
∧
P
∈
A
∧
Q
∈
A
∧
r
∈
A
∧
r
≤
K
X
→
r
⋖
K
P
∨
˙
r
∧
X
<
˙
P
∨
˙
r
→
r
=
X
110
109
adantrr
⊢
K
∈
HL
∧
X
∈
B
∧
P
∈
A
∧
Q
∈
A
∧
r
∈
A
∧
r
≤
K
X
∧
X
<
˙
P
∨
˙
Q
∧
¬
P
≤
K
X
→
r
⋖
K
P
∨
˙
r
∧
X
<
˙
P
∨
˙
r
→
r
=
X
111
41
102
110
mp2and
⊢
K
∈
HL
∧
X
∈
B
∧
P
∈
A
∧
Q
∈
A
∧
r
∈
A
∧
r
≤
K
X
∧
X
<
˙
P
∨
˙
Q
∧
¬
P
≤
K
X
→
r
=
X
112
simpl3
⊢
K
∈
HL
∧
X
∈
B
∧
P
∈
A
∧
Q
∈
A
∧
r
∈
A
∧
r
≤
K
X
∧
X
<
˙
P
∨
˙
Q
∧
¬
P
≤
K
X
→
r
∈
A
113
111
112
eqeltrrd
⊢
K
∈
HL
∧
X
∈
B
∧
P
∈
A
∧
Q
∈
A
∧
r
∈
A
∧
r
≤
K
X
∧
X
<
˙
P
∨
˙
Q
∧
¬
P
≤
K
X
→
X
∈
A
114
113
exp45
⊢
K
∈
HL
∧
X
∈
B
∧
P
∈
A
∧
Q
∈
A
∧
r
∈
A
→
r
≤
K
X
→
X
<
˙
P
∨
˙
Q
→
¬
P
≤
K
X
→
X
∈
A
115
114
3expa
⊢
K
∈
HL
∧
X
∈
B
∧
P
∈
A
∧
Q
∈
A
∧
r
∈
A
→
r
≤
K
X
→
X
<
˙
P
∨
˙
Q
→
¬
P
≤
K
X
→
X
∈
A
116
115
rexlimdva
⊢
K
∈
HL
∧
X
∈
B
∧
P
∈
A
∧
Q
∈
A
→
∃
r
∈
A
r
≤
K
X
→
X
<
˙
P
∨
˙
Q
→
¬
P
≤
K
X
→
X
∈
A
117
12
116
syld
⊢
K
∈
HL
∧
X
∈
B
∧
P
∈
A
∧
Q
∈
A
→
X
≠
0
˙
→
X
<
˙
P
∨
˙
Q
→
¬
P
≤
K
X
→
X
∈
A
118
117
imp32
⊢
K
∈
HL
∧
X
∈
B
∧
P
∈
A
∧
Q
∈
A
∧
X
≠
0
˙
∧
X
<
˙
P
∨
˙
Q
→
¬
P
≤
K
X
→
X
∈
A