Metamath Proof Explorer


Theorem cvratlem

Description: Lemma for cvrat . ( atcvatlem analog.) (Contributed by NM, 22-Nov-2011)

Ref Expression
Hypotheses cvrat.b B=BaseK
cvrat.s <˙=<K
cvrat.j ˙=joinK
cvrat.z 0˙=0.K
cvrat.a A=AtomsK
Assertion cvratlem KHLXBPAQAX0˙X<˙P˙Q¬PKXXA

Proof

Step Hyp Ref Expression
1 cvrat.b B=BaseK
2 cvrat.s <˙=<K
3 cvrat.j ˙=joinK
4 cvrat.z 0˙=0.K
5 cvrat.a A=AtomsK
6 hlatl KHLKAtLat
7 6 adantr KHLXBPAQAKAtLat
8 simpr1 KHLXBPAQAXB
9 eqid K=K
10 1 9 4 5 atlex KAtLatXBX0˙rArKX
11 10 3expia KAtLatXBX0˙rArKX
12 7 8 11 syl2anc KHLXBPAQAX0˙rArKX
13 6 3ad2ant1 KHLXBPAQArAKAtLat
14 simp22 KHLXBPAQArAPA
15 simp3 KHLXBPAQArArA
16 9 5 atcmp KAtLatPArAPKrP=r
17 13 14 15 16 syl3anc KHLXBPAQArAPKrP=r
18 breq1 P=rPKXrKX
19 18 biimprd P=rrKXPKX
20 17 19 syl6bi KHLXBPAQArAPKrrKXPKX
21 20 com23 KHLXBPAQArArKXPKrPKX
22 con3 PKrPKX¬PKX¬PKr
23 21 22 syl6 KHLXBPAQArArKX¬PKX¬PKr
24 23 impd KHLXBPAQArArKX¬PKX¬PKr
25 simp1 KHLXBPAQArAKHL
26 1 5 atbase rArB
27 26 3ad2ant3 KHLXBPAQArArB
28 eqid K=K
29 1 9 3 28 5 cvr1 KHLrBPA¬PKrrKr˙P
30 25 27 14 29 syl3anc KHLXBPAQArA¬PKrrKr˙P
31 24 30 sylibd KHLXBPAQArArKX¬PKXrKr˙P
32 31 imp KHLXBPAQArArKX¬PKXrKr˙P
33 hllat KHLKLat
34 33 3ad2ant1 KHLXBPAQArAKLat
35 1 5 atbase PAPB
36 14 35 syl KHLXBPAQArAPB
37 1 3 latjcom KLatPBrBP˙r=r˙P
38 34 36 27 37 syl3anc KHLXBPAQArAP˙r=r˙P
39 38 adantr KHLXBPAQArArKX¬PKXP˙r=r˙P
40 32 39 breqtrrd KHLXBPAQArArKX¬PKXrKP˙r
41 40 adantrrl KHLXBPAQArArKXX<˙P˙Q¬PKXrKP˙r
42 9 3 5 hlatlej1 KHLPArAPKP˙r
43 25 14 15 42 syl3anc KHLXBPAQArAPKP˙r
44 43 adantr KHLXBPAQArArKXX<˙P˙Q¬PKXPKP˙r
45 9 5 atcmp KAtLatrAPArKPr=P
46 13 15 14 45 syl3anc KHLXBPAQArArKPr=P
47 breq1 r=PrKXPKX
48 47 biimpd r=PrKXPKX
49 46 48 syl6bi KHLXBPAQArArKPrKXPKX
50 49 com23 KHLXBPAQArArKXrKPPKX
51 con3 rKPPKX¬PKX¬rKP
52 50 51 syl6 KHLXBPAQArArKX¬PKX¬rKP
53 52 imp32 KHLXBPAQArArKX¬PKX¬rKP
54 53 adantrrl KHLXBPAQArArKXX<˙P˙Q¬PKX¬rKP
55 simprl KHLXBPAQArArKXX<˙P˙QrKX
56 simp21 KHLXBPAQArAXB
57 simp23 KHLXBPAQArAQA
58 1 5 atbase QAQB
59 57 58 syl KHLXBPAQArAQB
60 1 3 latjcl KLatPBQBP˙QB
61 34 36 59 60 syl3anc KHLXBPAQArAP˙QB
62 25 56 61 3jca KHLXBPAQArAKHLXBP˙QB
63 9 2 pltle KHLXBP˙QBX<˙P˙QXKP˙Q
64 63 imp KHLXBP˙QBX<˙P˙QXKP˙Q
65 62 64 sylan KHLXBPAQArAX<˙P˙QXKP˙Q
66 65 adantrl KHLXBPAQArArKXX<˙P˙QXKP˙Q
67 hlpos KHLKPoset
68 67 3ad2ant1 KHLXBPAQArAKPoset
69 1 9 postr KPosetrBXBP˙QBrKXXKP˙QrKP˙Q
70 68 27 56 61 69 syl13anc KHLXBPAQArArKXXKP˙QrKP˙Q
71 70 adantr KHLXBPAQArArKXX<˙P˙QrKXXKP˙QrKP˙Q
72 55 66 71 mp2and KHLXBPAQArArKXX<˙P˙QrKP˙Q
73 72 adantrrr KHLXBPAQArArKXX<˙P˙Q¬PKXrKP˙Q
74 1 9 3 5 hlexch1 KHLrAQAPB¬rKPrKP˙QQKP˙r
75 74 3expia KHLrAQAPB¬rKPrKP˙QQKP˙r
76 75 impd KHLrAQAPB¬rKPrKP˙QQKP˙r
77 25 15 57 36 76 syl13anc KHLXBPAQArA¬rKPrKP˙QQKP˙r
78 77 adantr KHLXBPAQArArKXX<˙P˙Q¬PKX¬rKPrKP˙QQKP˙r
79 54 73 78 mp2and KHLXBPAQArArKXX<˙P˙Q¬PKXQKP˙r
80 1 3 latjcl KLatPBrBP˙rB
81 34 36 27 80 syl3anc KHLXBPAQArAP˙rB
82 1 9 3 latjle12 KLatPBQBP˙rBPKP˙rQKP˙rP˙QKP˙r
83 34 36 59 81 82 syl13anc KHLXBPAQArAPKP˙rQKP˙rP˙QKP˙r
84 83 adantr KHLXBPAQArArKXX<˙P˙Q¬PKXPKP˙rQKP˙rP˙QKP˙r
85 44 79 84 mpbi2and KHLXBPAQArArKXX<˙P˙Q¬PKXP˙QKP˙r
86 9 3 5 hlatlej1 KHLPAQAPKP˙Q
87 25 14 57 86 syl3anc KHLXBPAQArAPKP˙Q
88 87 adantr KHLXBPAQArArKXX<˙P˙Q¬PKXPKP˙Q
89 1 9 3 latjle12 KLatPBrBP˙QBPKP˙QrKP˙QP˙rKP˙Q
90 34 36 27 61 89 syl13anc KHLXBPAQArAPKP˙QrKP˙QP˙rKP˙Q
91 90 adantr KHLXBPAQArArKXX<˙P˙Q¬PKXPKP˙QrKP˙QP˙rKP˙Q
92 88 73 91 mpbi2and KHLXBPAQArArKXX<˙P˙Q¬PKXP˙rKP˙Q
93 34 61 81 3jca KHLXBPAQArAKLatP˙QBP˙rB
94 93 adantr KHLXBPAQArArKXX<˙P˙Q¬PKXKLatP˙QBP˙rB
95 1 9 latasymb KLatP˙QBP˙rBP˙QKP˙rP˙rKP˙QP˙Q=P˙r
96 94 95 syl KHLXBPAQArArKXX<˙P˙Q¬PKXP˙QKP˙rP˙rKP˙QP˙Q=P˙r
97 85 92 96 mpbi2and KHLXBPAQArArKXX<˙P˙Q¬PKXP˙Q=P˙r
98 breq2 P˙Q=P˙rX<˙P˙QX<˙P˙r
99 98 biimpcd X<˙P˙QP˙Q=P˙rX<˙P˙r
100 99 adantr X<˙P˙Q¬PKXP˙Q=P˙rX<˙P˙r
101 100 ad2antll KHLXBPAQArArKXX<˙P˙Q¬PKXP˙Q=P˙rX<˙P˙r
102 97 101 mpd KHLXBPAQArArKXX<˙P˙Q¬PKXX<˙P˙r
103 1 9 2 28 cvrnbtwn3 KPosetrBP˙rBXBrKP˙rrKXX<˙P˙rr=X
104 103 biimpd KPosetrBP˙rBXBrKP˙rrKXX<˙P˙rr=X
105 104 3expia KPosetrBP˙rBXBrKP˙rrKXX<˙P˙rr=X
106 68 27 81 56 105 syl13anc KHLXBPAQArArKP˙rrKXX<˙P˙rr=X
107 106 exp4a KHLXBPAQArArKP˙rrKXX<˙P˙rr=X
108 107 com23 KHLXBPAQArArKXrKP˙rX<˙P˙rr=X
109 108 imp4b KHLXBPAQArArKXrKP˙rX<˙P˙rr=X
110 109 adantrr KHLXBPAQArArKXX<˙P˙Q¬PKXrKP˙rX<˙P˙rr=X
111 41 102 110 mp2and KHLXBPAQArArKXX<˙P˙Q¬PKXr=X
112 simpl3 KHLXBPAQArArKXX<˙P˙Q¬PKXrA
113 111 112 eqeltrrd KHLXBPAQArArKXX<˙P˙Q¬PKXXA
114 113 exp45 KHLXBPAQArArKXX<˙P˙Q¬PKXXA
115 114 3expa KHLXBPAQArArKXX<˙P˙Q¬PKXXA
116 115 rexlimdva KHLXBPAQArArKXX<˙P˙Q¬PKXXA
117 12 116 syld KHLXBPAQAX0˙X<˙P˙Q¬PKXXA
118 117 imp32 KHLXBPAQAX0˙X<˙P˙Q¬PKXXA