Metamath Proof Explorer


Theorem cvrexchlem

Description: Lemma for cvrexch . ( cvexchlem analog.) (Contributed by NM, 18-Nov-2011)

Ref Expression
Hypotheses cvrexch.b B=BaseK
cvrexch.j ˙=joinK
cvrexch.m ˙=meetK
cvrexch.c C=K
Assertion cvrexchlem KHLXBYBX˙YCYXCX˙Y

Proof

Step Hyp Ref Expression
1 cvrexch.b B=BaseK
2 cvrexch.j ˙=joinK
3 cvrexch.m ˙=meetK
4 cvrexch.c C=K
5 hllat KHLKLat
6 1 3 latmcl KLatXBYBX˙YB
7 5 6 syl3an1 KHLXBYBX˙YB
8 eqid <K=<K
9 1 8 4 cvrlt KHLX˙YBYBX˙YCYX˙Y<KY
10 9 ex KHLX˙YBYBX˙YCYX˙Y<KY
11 7 10 syld3an2 KHLXBYBX˙YCYX˙Y<KY
12 eqid K=K
13 eqid AtomsK=AtomsK
14 1 12 8 13 hlrelat1 KHLX˙YBYBX˙Y<KYpAtomsK¬pKX˙YpKY
15 7 14 syld3an2 KHLXBYBX˙Y<KYpAtomsK¬pKX˙YpKY
16 11 15 syld KHLXBYBX˙YCYpAtomsK¬pKX˙YpKY
17 16 imp KHLXBYBX˙YCYpAtomsK¬pKX˙YpKY
18 simpl1 KHLXBYBpAtomsKKHL
19 18 hllatd KHLXBYBpAtomsKKLat
20 1 13 atbase pAtomsKpB
21 20 adantl KHLXBYBpAtomsKpB
22 simpl2 KHLXBYBpAtomsKXB
23 simpl3 KHLXBYBpAtomsKYB
24 1 12 3 latlem12 KLatpBXBYBpKXpKYpKX˙Y
25 19 21 22 23 24 syl13anc KHLXBYBpAtomsKpKXpKYpKX˙Y
26 25 biimpd KHLXBYBpAtomsKpKXpKYpKX˙Y
27 26 expcomd KHLXBYBpAtomsKpKYpKXpKX˙Y
28 con3 pKXpKX˙Y¬pKX˙Y¬pKX
29 27 28 syl6 KHLXBYBpAtomsKpKY¬pKX˙Y¬pKX
30 29 com23 KHLXBYBpAtomsK¬pKX˙YpKY¬pKX
31 30 a1d KHLXBYBpAtomsKX˙YCY¬pKX˙YpKY¬pKX
32 31 imp4d KHLXBYBpAtomsKX˙YCY¬pKX˙YpKY¬pKX
33 simpr KHLXBYBpAtomsKpAtomsK
34 1 12 2 4 13 cvr1 KHLXBpAtomsK¬pKXXCX˙p
35 18 22 33 34 syl3anc KHLXBYBpAtomsK¬pKXXCX˙p
36 32 35 sylibd KHLXBYBpAtomsKX˙YCY¬pKX˙YpKYXCX˙p
37 36 imp KHLXBYBpAtomsKX˙YCY¬pKX˙YpKYXCX˙p
38 simpl1 KHLXBYBpBKHL
39 38 hllatd KHLXBYBpBKLat
40 simpl2 KHLXBYBpBXB
41 simpl3 KHLXBYBpBYB
42 39 40 41 6 syl3anc KHLXBYBpBX˙YB
43 simpr KHLXBYBpBpB
44 1 2 latjass KLatXBX˙YBpBX˙X˙Y˙p=X˙X˙Y˙p
45 39 40 42 43 44 syl13anc KHLXBYBpBX˙X˙Y˙p=X˙X˙Y˙p
46 1 2 3 latabs1 KLatXBYBX˙X˙Y=X
47 5 46 syl3an1 KHLXBYBX˙X˙Y=X
48 47 adantr KHLXBYBpBX˙X˙Y=X
49 48 oveq1d KHLXBYBpBX˙X˙Y˙p=X˙p
50 45 49 eqtr3d KHLXBYBpBX˙X˙Y˙p=X˙p
51 50 adantr KHLXBYBpBX˙YCY¬pKX˙YpKYX˙X˙Y˙p=X˙p
52 1 12 8 2 latnle KLatX˙YBpB¬pKX˙YX˙Y<KX˙Y˙p
53 39 42 43 52 syl3anc KHLXBYBpB¬pKX˙YX˙Y<KX˙Y˙p
54 1 12 3 latmle2 KLatXBYBX˙YKY
55 39 40 41 54 syl3anc KHLXBYBpBX˙YKY
56 55 biantrurd KHLXBYBpBpKYX˙YKYpKY
57 1 12 2 latjle12 KLatX˙YBpBYBX˙YKYpKYX˙Y˙pKY
58 39 42 43 41 57 syl13anc KHLXBYBpBX˙YKYpKYX˙Y˙pKY
59 56 58 bitrd KHLXBYBpBpKYX˙Y˙pKY
60 53 59 anbi12d KHLXBYBpB¬pKX˙YpKYX˙Y<KX˙Y˙pX˙Y˙pKY
61 hlpos KHLKPoset
62 38 61 syl KHLXBYBpBKPoset
63 1 2 latjcl KLatX˙YBpBX˙Y˙pB
64 39 42 43 63 syl3anc KHLXBYBpBX˙Y˙pB
65 42 41 64 3jca KHLXBYBpBX˙YBYBX˙Y˙pB
66 1 12 8 4 cvrnbtwn2 KPosetX˙YBYBX˙Y˙pBX˙YCYX˙Y<KX˙Y˙pX˙Y˙pKYX˙Y˙p=Y
67 66 biimpd KPosetX˙YBYBX˙Y˙pBX˙YCYX˙Y<KX˙Y˙pX˙Y˙pKYX˙Y˙p=Y
68 67 3exp KPosetX˙YBYBX˙Y˙pBX˙YCYX˙Y<KX˙Y˙pX˙Y˙pKYX˙Y˙p=Y
69 62 65 68 sylc KHLXBYBpBX˙YCYX˙Y<KX˙Y˙pX˙Y˙pKYX˙Y˙p=Y
70 69 com23 KHLXBYBpBX˙Y<KX˙Y˙pX˙Y˙pKYX˙YCYX˙Y˙p=Y
71 60 70 sylbid KHLXBYBpB¬pKX˙YpKYX˙YCYX˙Y˙p=Y
72 71 com23 KHLXBYBpBX˙YCY¬pKX˙YpKYX˙Y˙p=Y
73 72 imp32 KHLXBYBpBX˙YCY¬pKX˙YpKYX˙Y˙p=Y
74 73 oveq2d KHLXBYBpBX˙YCY¬pKX˙YpKYX˙X˙Y˙p=X˙Y
75 51 74 eqtr3d KHLXBYBpBX˙YCY¬pKX˙YpKYX˙p=X˙Y
76 20 75 sylanl2 KHLXBYBpAtomsKX˙YCY¬pKX˙YpKYX˙p=X˙Y
77 37 76 breqtrd KHLXBYBpAtomsKX˙YCY¬pKX˙YpKYXCX˙Y
78 77 expr KHLXBYBpAtomsKX˙YCY¬pKX˙YpKYXCX˙Y
79 78 an32s KHLXBYBX˙YCYpAtomsK¬pKX˙YpKYXCX˙Y
80 79 rexlimdva KHLXBYBX˙YCYpAtomsK¬pKX˙YpKYXCX˙Y
81 17 80 mpd KHLXBYBX˙YCYXCX˙Y
82 81 ex KHLXBYBX˙YCYXCX˙Y