Metamath Proof Explorer


Theorem dalawlem12

Description: Lemma for dalaw . Second part of dalawlem13 . (Contributed by NM, 17-Sep-2012)

Ref Expression
Hypotheses dalawlem.l ˙=K
dalawlem.j ˙=joinK
dalawlem.m ˙=meetK
dalawlem.a A=AtomsK
Assertion dalawlem12 KHLQ=RP˙S˙Q˙T˙R˙UPAQARASATAUAP˙Q˙S˙T˙Q˙R˙T˙U˙R˙P˙U˙S

Proof

Step Hyp Ref Expression
1 dalawlem.l ˙=K
2 dalawlem.j ˙=joinK
3 dalawlem.m ˙=meetK
4 dalawlem.a A=AtomsK
5 eqid BaseK=BaseK
6 simp11 KHLQ=RP˙S˙Q˙T˙R˙UPAQARASATAUAKHL
7 6 hllatd KHLQ=RP˙S˙Q˙T˙R˙UPAQARASATAUAKLat
8 simp21 KHLQ=RP˙S˙Q˙T˙R˙UPAQARASATAUAPA
9 simp22 KHLQ=RP˙S˙Q˙T˙R˙UPAQARASATAUAQA
10 5 2 4 hlatjcl KHLPAQAP˙QBaseK
11 6 8 9 10 syl3anc KHLQ=RP˙S˙Q˙T˙R˙UPAQARASATAUAP˙QBaseK
12 simp31 KHLQ=RP˙S˙Q˙T˙R˙UPAQARASATAUASA
13 simp32 KHLQ=RP˙S˙Q˙T˙R˙UPAQARASATAUATA
14 5 2 4 hlatjcl KHLSATAS˙TBaseK
15 6 12 13 14 syl3anc KHLQ=RP˙S˙Q˙T˙R˙UPAQARASATAUAS˙TBaseK
16 5 3 latmcl KLatP˙QBaseKS˙TBaseKP˙Q˙S˙TBaseK
17 7 11 15 16 syl3anc KHLQ=RP˙S˙Q˙T˙R˙UPAQARASATAUAP˙Q˙S˙TBaseK
18 5 4 atbase SASBaseK
19 12 18 syl KHLQ=RP˙S˙Q˙T˙R˙UPAQARASATAUASBaseK
20 5 2 latjcl KLatP˙QBaseKSBaseKP˙Q˙SBaseK
21 7 11 19 20 syl3anc KHLQ=RP˙S˙Q˙T˙R˙UPAQARASATAUAP˙Q˙SBaseK
22 5 4 atbase TATBaseK
23 13 22 syl KHLQ=RP˙S˙Q˙T˙R˙UPAQARASATAUATBaseK
24 5 3 latmcl KLatP˙Q˙SBaseKTBaseKP˙Q˙S˙TBaseK
25 7 21 23 24 syl3anc KHLQ=RP˙S˙Q˙T˙R˙UPAQARASATAUAP˙Q˙S˙TBaseK
26 5 2 latjcl KLatP˙Q˙S˙TBaseKSBaseKP˙Q˙S˙T˙SBaseK
27 7 25 19 26 syl3anc KHLQ=RP˙S˙Q˙T˙R˙UPAQARASATAUAP˙Q˙S˙T˙SBaseK
28 5 4 atbase QAQBaseK
29 9 28 syl KHLQ=RP˙S˙Q˙T˙R˙UPAQARASATAUAQBaseK
30 simp33 KHLQ=RP˙S˙Q˙T˙R˙UPAQARASATAUAUA
31 5 2 4 hlatjcl KHLTAUAT˙UBaseK
32 6 13 30 31 syl3anc KHLQ=RP˙S˙Q˙T˙R˙UPAQARASATAUAT˙UBaseK
33 5 3 latmcl KLatQBaseKT˙UBaseKQ˙T˙UBaseK
34 7 29 32 33 syl3anc KHLQ=RP˙S˙Q˙T˙R˙UPAQARASATAUAQ˙T˙UBaseK
35 5 2 4 hlatjcl KHLUASAU˙SBaseK
36 6 30 12 35 syl3anc KHLQ=RP˙S˙Q˙T˙R˙UPAQARASATAUAU˙SBaseK
37 5 2 latjcl KLatQ˙T˙UBaseKU˙SBaseKQ˙T˙U˙U˙SBaseK
38 7 34 36 37 syl3anc KHLQ=RP˙S˙Q˙T˙R˙UPAQARASATAUAQ˙T˙U˙U˙SBaseK
39 5 1 2 latlej1 KLatP˙QBaseKSBaseKP˙Q˙P˙Q˙S
40 7 11 19 39 syl3anc KHLQ=RP˙S˙Q˙T˙R˙UPAQARASATAUAP˙Q˙P˙Q˙S
41 5 2 4 hlatjcl KHLTASAT˙SBaseK
42 6 13 12 41 syl3anc KHLQ=RP˙S˙Q˙T˙R˙UPAQARASATAUAT˙SBaseK
43 5 1 3 latmlem1 KLatP˙QBaseKP˙Q˙SBaseKT˙SBaseKP˙Q˙P˙Q˙SP˙Q˙T˙S˙P˙Q˙S˙T˙S
44 7 11 21 42 43 syl13anc KHLQ=RP˙S˙Q˙T˙R˙UPAQARASATAUAP˙Q˙P˙Q˙SP˙Q˙T˙S˙P˙Q˙S˙T˙S
45 40 44 mpd KHLQ=RP˙S˙Q˙T˙R˙UPAQARASATAUAP˙Q˙T˙S˙P˙Q˙S˙T˙S
46 2 4 hlatjcom KHLSATAS˙T=T˙S
47 6 12 13 46 syl3anc KHLQ=RP˙S˙Q˙T˙R˙UPAQARASATAUAS˙T=T˙S
48 47 oveq2d KHLQ=RP˙S˙Q˙T˙R˙UPAQARASATAUAP˙Q˙S˙T=P˙Q˙T˙S
49 5 1 2 latlej2 KLatP˙QBaseKSBaseKS˙P˙Q˙S
50 7 11 19 49 syl3anc KHLQ=RP˙S˙Q˙T˙R˙UPAQARASATAUAS˙P˙Q˙S
51 5 1 2 3 4 atmod2i2 KHLTAP˙Q˙SBaseKSBaseKS˙P˙Q˙SP˙Q˙S˙T˙S=P˙Q˙S˙T˙S
52 6 13 21 19 50 51 syl131anc KHLQ=RP˙S˙Q˙T˙R˙UPAQARASATAUAP˙Q˙S˙T˙S=P˙Q˙S˙T˙S
53 45 48 52 3brtr4d KHLQ=RP˙S˙Q˙T˙R˙UPAQARASATAUAP˙Q˙S˙T˙P˙Q˙S˙T˙S
54 hlol KHLKOL
55 6 54 syl KHLQ=RP˙S˙Q˙T˙R˙UPAQARASATAUAKOL
56 5 2 4 hlatjcl KHLPASAP˙SBaseK
57 6 8 12 56 syl3anc KHLQ=RP˙S˙Q˙T˙R˙UPAQARASATAUAP˙SBaseK
58 5 2 latjcl KLatQBaseKP˙SBaseKQ˙P˙SBaseK
59 7 29 57 58 syl3anc KHLQ=RP˙S˙Q˙T˙R˙UPAQARASATAUAQ˙P˙SBaseK
60 5 2 4 hlatjcl KHLQATAQ˙TBaseK
61 6 9 13 60 syl3anc KHLQ=RP˙S˙Q˙T˙R˙UPAQARASATAUAQ˙TBaseK
62 5 3 latmassOLD KOLQ˙P˙SBaseKQ˙TBaseKTBaseKQ˙P˙S˙Q˙T˙T=Q˙P˙S˙Q˙T˙T
63 55 59 61 23 62 syl13anc KHLQ=RP˙S˙Q˙T˙R˙UPAQARASATAUAQ˙P˙S˙Q˙T˙T=Q˙P˙S˙Q˙T˙T
64 2 4 hlatjass KHLPAQASAP˙Q˙S=P˙Q˙S
65 6 8 9 12 64 syl13anc KHLQ=RP˙S˙Q˙T˙R˙UPAQARASATAUAP˙Q˙S=P˙Q˙S
66 2 4 hlatj12 KHLPAQASAP˙Q˙S=Q˙P˙S
67 6 8 9 12 66 syl13anc KHLQ=RP˙S˙Q˙T˙R˙UPAQARASATAUAP˙Q˙S=Q˙P˙S
68 65 67 eqtr2d KHLQ=RP˙S˙Q˙T˙R˙UPAQARASATAUAQ˙P˙S=P˙Q˙S
69 1 2 4 hlatlej2 KHLQATAT˙Q˙T
70 6 9 13 69 syl3anc KHLQ=RP˙S˙Q˙T˙R˙UPAQARASATAUAT˙Q˙T
71 5 1 3 latleeqm2 KLatTBaseKQ˙TBaseKT˙Q˙TQ˙T˙T=T
72 7 23 61 71 syl3anc KHLQ=RP˙S˙Q˙T˙R˙UPAQARASATAUAT˙Q˙TQ˙T˙T=T
73 70 72 mpbid KHLQ=RP˙S˙Q˙T˙R˙UPAQARASATAUAQ˙T˙T=T
74 68 73 oveq12d KHLQ=RP˙S˙Q˙T˙R˙UPAQARASATAUAQ˙P˙S˙Q˙T˙T=P˙Q˙S˙T
75 63 74 eqtr2d KHLQ=RP˙S˙Q˙T˙R˙UPAQARASATAUAP˙Q˙S˙T=Q˙P˙S˙Q˙T˙T
76 1 2 4 hlatlej1 KHLQATAQ˙Q˙T
77 6 9 13 76 syl3anc KHLQ=RP˙S˙Q˙T˙R˙UPAQARASATAUAQ˙Q˙T
78 5 1 2 3 4 atmod1i1 KHLQAP˙SBaseKQ˙TBaseKQ˙Q˙TQ˙P˙S˙Q˙T=Q˙P˙S˙Q˙T
79 6 9 57 61 77 78 syl131anc KHLQ=RP˙S˙Q˙T˙R˙UPAQARASATAUAQ˙P˙S˙Q˙T=Q˙P˙S˙Q˙T
80 1 2 4 hlatlej2 KHLUAQAQ˙U˙Q
81 6 30 9 80 syl3anc KHLQ=RP˙S˙Q˙T˙R˙UPAQARASATAUAQ˙U˙Q
82 simp13 KHLQ=RP˙S˙Q˙T˙R˙UPAQARASATAUAP˙S˙Q˙T˙R˙U
83 simp12 KHLQ=RP˙S˙Q˙T˙R˙UPAQARASATAUAQ=R
84 83 oveq1d KHLQ=RP˙S˙Q˙T˙R˙UPAQARASATAUAQ˙U=R˙U
85 2 4 hlatjcom KHLQAUAQ˙U=U˙Q
86 6 9 30 85 syl3anc KHLQ=RP˙S˙Q˙T˙R˙UPAQARASATAUAQ˙U=U˙Q
87 84 86 eqtr3d KHLQ=RP˙S˙Q˙T˙R˙UPAQARASATAUAR˙U=U˙Q
88 82 87 breqtrd KHLQ=RP˙S˙Q˙T˙R˙UPAQARASATAUAP˙S˙Q˙T˙U˙Q
89 5 3 latmcl KLatP˙SBaseKQ˙TBaseKP˙S˙Q˙TBaseK
90 7 57 61 89 syl3anc KHLQ=RP˙S˙Q˙T˙R˙UPAQARASATAUAP˙S˙Q˙TBaseK
91 5 2 4 hlatjcl KHLUAQAU˙QBaseK
92 6 30 9 91 syl3anc KHLQ=RP˙S˙Q˙T˙R˙UPAQARASATAUAU˙QBaseK
93 5 1 2 latjle12 KLatQBaseKP˙S˙Q˙TBaseKU˙QBaseKQ˙U˙QP˙S˙Q˙T˙U˙QQ˙P˙S˙Q˙T˙U˙Q
94 7 29 90 92 93 syl13anc KHLQ=RP˙S˙Q˙T˙R˙UPAQARASATAUAQ˙U˙QP˙S˙Q˙T˙U˙QQ˙P˙S˙Q˙T˙U˙Q
95 81 88 94 mpbi2and KHLQ=RP˙S˙Q˙T˙R˙UPAQARASATAUAQ˙P˙S˙Q˙T˙U˙Q
96 79 95 eqbrtrrd KHLQ=RP˙S˙Q˙T˙R˙UPAQARASATAUAQ˙P˙S˙Q˙T˙U˙Q
97 1 2 4 hlatlej1 KHLTAUAT˙T˙U
98 6 13 30 97 syl3anc KHLQ=RP˙S˙Q˙T˙R˙UPAQARASATAUAT˙T˙U
99 5 3 latmcl KLatQ˙P˙SBaseKQ˙TBaseKQ˙P˙S˙Q˙TBaseK
100 7 59 61 99 syl3anc KHLQ=RP˙S˙Q˙T˙R˙UPAQARASATAUAQ˙P˙S˙Q˙TBaseK
101 5 1 3 latmlem12 KLatQ˙P˙S˙Q˙TBaseKU˙QBaseKTBaseKT˙UBaseKQ˙P˙S˙Q˙T˙U˙QT˙T˙UQ˙P˙S˙Q˙T˙T˙U˙Q˙T˙U
102 7 100 92 23 32 101 syl122anc KHLQ=RP˙S˙Q˙T˙R˙UPAQARASATAUAQ˙P˙S˙Q˙T˙U˙QT˙T˙UQ˙P˙S˙Q˙T˙T˙U˙Q˙T˙U
103 96 98 102 mp2and KHLQ=RP˙S˙Q˙T˙R˙UPAQARASATAUAQ˙P˙S˙Q˙T˙T˙U˙Q˙T˙U
104 75 103 eqbrtrd KHLQ=RP˙S˙Q˙T˙R˙UPAQARASATAUAP˙Q˙S˙T˙U˙Q˙T˙U
105 1 2 4 hlatlej2 KHLTAUAU˙T˙U
106 6 13 30 105 syl3anc KHLQ=RP˙S˙Q˙T˙R˙UPAQARASATAUAU˙T˙U
107 5 1 2 3 4 atmod1i1 KHLUAQBaseKT˙UBaseKU˙T˙UU˙Q˙T˙U=U˙Q˙T˙U
108 6 30 29 32 106 107 syl131anc KHLQ=RP˙S˙Q˙T˙R˙UPAQARASATAUAU˙Q˙T˙U=U˙Q˙T˙U
109 5 4 atbase UAUBaseK
110 30 109 syl KHLQ=RP˙S˙Q˙T˙R˙UPAQARASATAUAUBaseK
111 5 2 latjcom KLatUBaseKQ˙T˙UBaseKU˙Q˙T˙U=Q˙T˙U˙U
112 7 110 34 111 syl3anc KHLQ=RP˙S˙Q˙T˙R˙UPAQARASATAUAU˙Q˙T˙U=Q˙T˙U˙U
113 108 112 eqtr3d KHLQ=RP˙S˙Q˙T˙R˙UPAQARASATAUAU˙Q˙T˙U=Q˙T˙U˙U
114 104 113 breqtrd KHLQ=RP˙S˙Q˙T˙R˙UPAQARASATAUAP˙Q˙S˙T˙Q˙T˙U˙U
115 5 2 latjcl KLatQ˙T˙UBaseKUBaseKQ˙T˙U˙UBaseK
116 7 34 110 115 syl3anc KHLQ=RP˙S˙Q˙T˙R˙UPAQARASATAUAQ˙T˙U˙UBaseK
117 5 1 2 latjlej1 KLatP˙Q˙S˙TBaseKQ˙T˙U˙UBaseKSBaseKP˙Q˙S˙T˙Q˙T˙U˙UP˙Q˙S˙T˙S˙Q˙T˙U˙U˙S
118 7 25 116 19 117 syl13anc KHLQ=RP˙S˙Q˙T˙R˙UPAQARASATAUAP˙Q˙S˙T˙Q˙T˙U˙UP˙Q˙S˙T˙S˙Q˙T˙U˙U˙S
119 114 118 mpd KHLQ=RP˙S˙Q˙T˙R˙UPAQARASATAUAP˙Q˙S˙T˙S˙Q˙T˙U˙U˙S
120 5 2 latjass KLatQ˙T˙UBaseKUBaseKSBaseKQ˙T˙U˙U˙S=Q˙T˙U˙U˙S
121 7 34 110 19 120 syl13anc KHLQ=RP˙S˙Q˙T˙R˙UPAQARASATAUAQ˙T˙U˙U˙S=Q˙T˙U˙U˙S
122 119 121 breqtrd KHLQ=RP˙S˙Q˙T˙R˙UPAQARASATAUAP˙Q˙S˙T˙S˙Q˙T˙U˙U˙S
123 5 1 7 17 27 38 53 122 lattrd KHLQ=RP˙S˙Q˙T˙R˙UPAQARASATAUAP˙Q˙S˙T˙Q˙T˙U˙U˙S
124 5 1 3 latmle1 KLatP˙QBaseKS˙TBaseKP˙Q˙S˙T˙P˙Q
125 7 11 15 124 syl3anc KHLQ=RP˙S˙Q˙T˙R˙UPAQARASATAUAP˙Q˙S˙T˙P˙Q
126 5 1 3 latlem12 KLatP˙Q˙S˙TBaseKQ˙T˙U˙U˙SBaseKP˙QBaseKP˙Q˙S˙T˙Q˙T˙U˙U˙SP˙Q˙S˙T˙P˙QP˙Q˙S˙T˙Q˙T˙U˙U˙S˙P˙Q
127 7 17 38 11 126 syl13anc KHLQ=RP˙S˙Q˙T˙R˙UPAQARASATAUAP˙Q˙S˙T˙Q˙T˙U˙U˙SP˙Q˙S˙T˙P˙QP˙Q˙S˙T˙Q˙T˙U˙U˙S˙P˙Q
128 123 125 127 mpbi2and KHLQ=RP˙S˙Q˙T˙R˙UPAQARASATAUAP˙Q˙S˙T˙Q˙T˙U˙U˙S˙P˙Q
129 5 4 atbase PAPBaseK
130 8 129 syl KHLQ=RP˙S˙Q˙T˙R˙UPAQARASATAUAPBaseK
131 5 1 2 3 latmlej12 KLatQBaseKT˙UBaseKPBaseKQ˙T˙U˙P˙Q
132 7 29 32 130 131 syl13anc KHLQ=RP˙S˙Q˙T˙R˙UPAQARASATAUAQ˙T˙U˙P˙Q
133 5 1 2 3 4 llnmod1i2 KHLQ˙T˙UBaseKP˙QBaseKUASAQ˙T˙U˙P˙QQ˙T˙U˙U˙S˙P˙Q=Q˙T˙U˙U˙S˙P˙Q
134 6 34 11 30 12 132 133 syl321anc KHLQ=RP˙S˙Q˙T˙R˙UPAQARASATAUAQ˙T˙U˙U˙S˙P˙Q=Q˙T˙U˙U˙S˙P˙Q
135 2 4 hlatjidm KHLQAQ˙Q=Q
136 6 9 135 syl2anc KHLQ=RP˙S˙Q˙T˙R˙UPAQARASATAUAQ˙Q=Q
137 83 oveq2d KHLQ=RP˙S˙Q˙T˙R˙UPAQARASATAUAQ˙Q=Q˙R
138 136 137 eqtr3d KHLQ=RP˙S˙Q˙T˙R˙UPAQARASATAUAQ=Q˙R
139 138 oveq1d KHLQ=RP˙S˙Q˙T˙R˙UPAQARASATAUAQ˙T˙U=Q˙R˙T˙U
140 5 3 latmcom KLatU˙SBaseKP˙QBaseKU˙S˙P˙Q=P˙Q˙U˙S
141 7 36 11 140 syl3anc KHLQ=RP˙S˙Q˙T˙R˙UPAQARASATAUAU˙S˙P˙Q=P˙Q˙U˙S
142 2 4 hlatjcom KHLPAQAP˙Q=Q˙P
143 6 8 9 142 syl3anc KHLQ=RP˙S˙Q˙T˙R˙UPAQARASATAUAP˙Q=Q˙P
144 83 oveq1d KHLQ=RP˙S˙Q˙T˙R˙UPAQARASATAUAQ˙P=R˙P
145 143 144 eqtrd KHLQ=RP˙S˙Q˙T˙R˙UPAQARASATAUAP˙Q=R˙P
146 145 oveq1d KHLQ=RP˙S˙Q˙T˙R˙UPAQARASATAUAP˙Q˙U˙S=R˙P˙U˙S
147 141 146 eqtrd KHLQ=RP˙S˙Q˙T˙R˙UPAQARASATAUAU˙S˙P˙Q=R˙P˙U˙S
148 139 147 oveq12d KHLQ=RP˙S˙Q˙T˙R˙UPAQARASATAUAQ˙T˙U˙U˙S˙P˙Q=Q˙R˙T˙U˙R˙P˙U˙S
149 134 148 eqtr3d KHLQ=RP˙S˙Q˙T˙R˙UPAQARASATAUAQ˙T˙U˙U˙S˙P˙Q=Q˙R˙T˙U˙R˙P˙U˙S
150 128 149 breqtrd KHLQ=RP˙S˙Q˙T˙R˙UPAQARASATAUAP˙Q˙S˙T˙Q˙R˙T˙U˙R˙P˙U˙S