Description: Lemma for dchrvmasum and dchrvmasumif . Apply dchrisum for the function log ( y ) / y , which is decreasing above _e (or above 3, the nearest integer bound). (Contributed by Mario Carneiro, 5-May-2016)
Ref | Expression | ||
---|---|---|---|
Hypotheses | rpvmasum.z | |
|
rpvmasum.l | |
||
rpvmasum.a | |
||
rpvmasum.g | |
||
rpvmasum.d | |
||
rpvmasum.1 | |
||
dchrisum.b | |
||
dchrisum.n1 | |
||
dchrvmasumlema.f | |
||
Assertion | dchrvmasumlema | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rpvmasum.z | |
|
2 | rpvmasum.l | |
|
3 | rpvmasum.a | |
|
4 | rpvmasum.g | |
|
5 | rpvmasum.d | |
|
6 | rpvmasum.1 | |
|
7 | dchrisum.b | |
|
8 | dchrisum.n1 | |
|
9 | dchrvmasumlema.f | |
|
10 | fveq2 | |
|
11 | id | |
|
12 | 10 11 | oveq12d | |
13 | 3nn | |
|
14 | 13 | a1i | |
15 | relogcl | |
|
16 | rerpdivcl | |
|
17 | 15 16 | mpancom | |
18 | 17 | adantl | |
19 | simp3r | |
|
20 | simp2l | |
|
21 | 20 | rpred | |
22 | ere | |
|
23 | 22 | a1i | |
24 | 3re | |
|
25 | 24 | a1i | |
26 | egt2lt3 | |
|
27 | 26 | simpri | |
28 | 22 24 27 | ltleii | |
29 | 28 | a1i | |
30 | simp3l | |
|
31 | 23 25 21 29 30 | letrd | |
32 | simp2r | |
|
33 | 32 | rpred | |
34 | 23 21 33 31 19 | letrd | |
35 | logdivle | |
|
36 | 21 31 33 34 35 | syl22anc | |
37 | 19 36 | mpbid | |
38 | rpcn | |
|
39 | 38 | cxp1d | |
40 | 39 | oveq2d | |
41 | 40 | mpteq2ia | |
42 | 1rp | |
|
43 | cxploglim | |
|
44 | 42 43 | mp1i | |
45 | 41 44 | eqbrtrrid | |
46 | 2fveq3 | |
|
47 | fveq2 | |
|
48 | id | |
|
49 | 47 48 | oveq12d | |
50 | 46 49 | oveq12d | |
51 | 50 | cbvmptv | |
52 | 9 51 | eqtri | |
53 | 1 2 3 4 5 6 7 8 12 14 18 37 45 52 | dchrisum | |
54 | 2fveq3 | |
|
55 | 54 | fvoveq1d | |
56 | fveq2 | |
|
57 | id | |
|
58 | 56 57 | oveq12d | |
59 | 58 | oveq2d | |
60 | 55 59 | breq12d | |
61 | 60 | cbvralvw | |
62 | 61 | anbi2i | |
63 | 62 | rexbii | |
64 | 63 | exbii | |
65 | 53 64 | sylib | |