Metamath Proof Explorer


Theorem dchrvmasumlema

Description: Lemma for dchrvmasum and dchrvmasumif . Apply dchrisum for the function log ( y ) / y , which is decreasing above _e (or above 3, the nearest integer bound). (Contributed by Mario Carneiro, 5-May-2016)

Ref Expression
Hypotheses rpvmasum.z Z=/N
rpvmasum.l L=ℤRHomZ
rpvmasum.a φN
rpvmasum.g G=DChrN
rpvmasum.d D=BaseG
rpvmasum.1 1˙=0G
dchrisum.b φXD
dchrisum.n1 φX1˙
dchrvmasumlema.f F=aXLalogaa
Assertion dchrvmasumlema φtc0+∞seq1+Fty3+∞seq1+Fytclogyy

Proof

Step Hyp Ref Expression
1 rpvmasum.z Z=/N
2 rpvmasum.l L=ℤRHomZ
3 rpvmasum.a φN
4 rpvmasum.g G=DChrN
5 rpvmasum.d D=BaseG
6 rpvmasum.1 1˙=0G
7 dchrisum.b φXD
8 dchrisum.n1 φX1˙
9 dchrvmasumlema.f F=aXLalogaa
10 fveq2 n=xlogn=logx
11 id n=xn=x
12 10 11 oveq12d n=xlognn=logxx
13 3nn 3
14 13 a1i φ3
15 relogcl n+logn
16 rerpdivcl lognn+lognn
17 15 16 mpancom n+lognn
18 17 adantl φn+lognn
19 simp3r φn+x+3nnxnx
20 simp2l φn+x+3nnxn+
21 20 rpred φn+x+3nnxn
22 ere e
23 22 a1i φn+x+3nnxe
24 3re 3
25 24 a1i φn+x+3nnx3
26 egt2lt3 2<ee<3
27 26 simpri e<3
28 22 24 27 ltleii e3
29 28 a1i φn+x+3nnxe3
30 simp3l φn+x+3nnx3n
31 23 25 21 29 30 letrd φn+x+3nnxen
32 simp2r φn+x+3nnxx+
33 32 rpred φn+x+3nnxx
34 23 21 33 31 19 letrd φn+x+3nnxex
35 logdivle nenxexnxlogxxlognn
36 21 31 33 34 35 syl22anc φn+x+3nnxnxlogxxlognn
37 19 36 mpbid φn+x+3nnxlogxxlognn
38 rpcn n+n
39 38 cxp1d n+n1=n
40 39 oveq2d n+lognn1=lognn
41 40 mpteq2ia n+lognn1=n+lognn
42 1rp 1+
43 cxploglim 1+n+lognn10
44 42 43 mp1i φn+lognn10
45 41 44 eqbrtrrid φn+lognn0
46 2fveq3 a=nXLa=XLn
47 fveq2 a=nloga=logn
48 id a=na=n
49 47 48 oveq12d a=nlogaa=lognn
50 46 49 oveq12d a=nXLalogaa=XLnlognn
51 50 cbvmptv aXLalogaa=nXLnlognn
52 9 51 eqtri F=nXLnlognn
53 1 2 3 4 5 6 7 8 12 14 18 37 45 52 dchrisum φtc0+∞seq1+Ftx3+∞seq1+Fxtclogxx
54 2fveq3 x=yseq1+Fx=seq1+Fy
55 54 fvoveq1d x=yseq1+Fxt=seq1+Fyt
56 fveq2 x=ylogx=logy
57 id x=yx=y
58 56 57 oveq12d x=ylogxx=logyy
59 58 oveq2d x=yclogxx=clogyy
60 55 59 breq12d x=yseq1+Fxtclogxxseq1+Fytclogyy
61 60 cbvralvw x3+∞seq1+Fxtclogxxy3+∞seq1+Fytclogyy
62 61 anbi2i seq1+Ftx3+∞seq1+Fxtclogxxseq1+Fty3+∞seq1+Fytclogyy
63 62 rexbii c0+∞seq1+Ftx3+∞seq1+Fxtclogxxc0+∞seq1+Fty3+∞seq1+Fytclogyy
64 63 exbii tc0+∞seq1+Ftx3+∞seq1+Fxtclogxxtc0+∞seq1+Fty3+∞seq1+Fytclogyy
65 53 64 sylib φtc0+∞seq1+Fty3+∞seq1+Fytclogyy