Metamath Proof Explorer


Theorem dfrtrcl5

Description: Definition of reflexive-transitive closure as a standard closure. (Contributed by RP, 1-Nov-2020)

Ref Expression
Assertion dfrtrcl5 t* = x V y | x y I dom y ran y y y y y

Proof

Step Hyp Ref Expression
1 df-rtrcl t* = x V z | I dom x ran x z x z z z z
2 ancom I dom y ran y y y y y y y y I dom y ran y y
3 2 anbi2i x y I dom y ran y y y y y x y y y y I dom y ran y y
4 3 abbii y | x y I dom y ran y y y y y = y | x y y y y I dom y ran y y
5 4 inteqi y | x y I dom y ran y y y y y = y | x y y y y I dom y ran y y
6 5 mpteq2i x V y | x y I dom y ran y y y y y = x V y | x y y y y I dom y ran y y
7 vex x V
8 7 rtrclexi y | x y y y y I dom y ran y y V
9 8 a1i x V y | x y y y y I dom y ran y y V
10 dmexg x V dom x V
11 rnexg x V ran x V
12 unexg dom x V ran x V dom x ran x V
13 10 11 12 syl2anc x V dom x ran x V
14 resiexg dom x ran x V I dom x ran x V
15 7 13 14 mp2b I dom x ran x V
16 7 15 unex x I dom x ran x V
17 16 trclexi z | x I dom x ran x z z z z V
18 17 a1i x V z | x I dom x ran x z z z z V
19 simpr x I dom x ran x z z z z z z z
20 19 cotrintab z | x I dom x ran x z z z z z | x I dom x ran x z z z z z | x I dom x ran x z z z z
21 20 a1i x V z | x I dom x ran x z z z z z | x I dom x ran x z z z z z | x I dom x ran x z z z z
22 7 dmex dom x V
23 7 rnex ran x V
24 12 resiexd dom x V ran x V I dom x ran x V
25 22 23 24 mp2an I dom x ran x V
26 7 25 unex x I dom x ran x V
27 dmtrcl x I dom x ran x V dom z | x I dom x ran x z z z z = dom x I dom x ran x
28 26 27 ax-mp dom z | x I dom x ran x z z z z = dom x I dom x ran x
29 dmun dom x I dom x ran x = dom x dom I dom x ran x
30 dmresi dom I dom x ran x = dom x ran x
31 30 uneq2i dom x dom I dom x ran x = dom x dom x ran x
32 ssun1 dom x dom x ran x
33 ssequn1 dom x dom x ran x dom x dom x ran x = dom x ran x
34 32 33 mpbi dom x dom x ran x = dom x ran x
35 29 31 34 3eqtri dom x I dom x ran x = dom x ran x
36 28 35 eqtri dom z | x I dom x ran x z z z z = dom x ran x
37 rntrcl x I dom x ran x V ran z | x I dom x ran x z z z z = ran x I dom x ran x
38 26 37 ax-mp ran z | x I dom x ran x z z z z = ran x I dom x ran x
39 rnun ran x I dom x ran x = ran x ran I dom x ran x
40 rnresi ran I dom x ran x = dom x ran x
41 40 uneq2i ran x ran I dom x ran x = ran x dom x ran x
42 ssun2 ran x dom x ran x
43 ssequn1 ran x dom x ran x ran x dom x ran x = dom x ran x
44 42 43 mpbi ran x dom x ran x = dom x ran x
45 39 41 44 3eqtri ran x I dom x ran x = dom x ran x
46 38 45 eqtri ran z | x I dom x ran x z z z z = dom x ran x
47 36 46 uneq12i dom z | x I dom x ran x z z z z ran z | x I dom x ran x z z z z = dom x ran x dom x ran x
48 unidm dom x ran x dom x ran x = dom x ran x
49 47 48 eqtri dom z | x I dom x ran x z z z z ran z | x I dom x ran x z z z z = dom x ran x
50 49 reseq2i I dom z | x I dom x ran x z z z z ran z | x I dom x ran x z z z z = I dom x ran x
51 ssun2 I dom x ran x x I dom x ran x
52 ssmin x I dom x ran x z | x I dom x ran x z z z z
53 51 52 sstri I dom x ran x z | x I dom x ran x z z z z
54 50 53 eqsstri I dom z | x I dom x ran x z z z z ran z | x I dom x ran x z z z z z | x I dom x ran x z z z z
55 54 a1i x V I dom z | x I dom x ran x z z z z ran z | x I dom x ran x z z z z z | x I dom x ran x z z z z
56 simprl x y y y y I dom y ran y y y y y
57 56 cotrintab y | x y y y y I dom y ran y y y | x y y y y I dom y ran y y y | x y y y y I dom y ran y y
58 57 a1i x V y | x y y y y I dom y ran y y y | x y y y y I dom y ran y y y | x y y y y I dom y ran y y
59 id y = z | x I dom x ran x z z z z y = z | x I dom x ran x z z z z
60 59 59 coeq12d y = z | x I dom x ran x z z z z y y = z | x I dom x ran x z z z z z | x I dom x ran x z z z z
61 60 59 sseq12d y = z | x I dom x ran x z z z z y y y z | x I dom x ran x z z z z z | x I dom x ran x z z z z z | x I dom x ran x z z z z
62 dmeq y = z | x I dom x ran x z z z z dom y = dom z | x I dom x ran x z z z z
63 rneq y = z | x I dom x ran x z z z z ran y = ran z | x I dom x ran x z z z z
64 62 63 uneq12d y = z | x I dom x ran x z z z z dom y ran y = dom z | x I dom x ran x z z z z ran z | x I dom x ran x z z z z
65 64 reseq2d y = z | x I dom x ran x z z z z I dom y ran y = I dom z | x I dom x ran x z z z z ran z | x I dom x ran x z z z z
66 65 59 sseq12d y = z | x I dom x ran x z z z z I dom y ran y y I dom z | x I dom x ran x z z z z ran z | x I dom x ran x z z z z z | x I dom x ran x z z z z
67 id z = y | x y y y y I dom y ran y y z = y | x y y y y I dom y ran y y
68 67 67 coeq12d z = y | x y y y y I dom y ran y y z z = y | x y y y y I dom y ran y y y | x y y y y I dom y ran y y
69 68 67 sseq12d z = y | x y y y y I dom y ran y y z z z y | x y y y y I dom y ran y y y | x y y y y I dom y ran y y y | x y y y y I dom y ran y y
70 9 18 21 55 58 61 66 69 mptrcllem x V y | x y y y y I dom y ran y y = x V z | x I dom x ran x z z z z
71 df-3an I dom x ran x z x z z z z I dom x ran x z x z z z z
72 ancom I dom x ran x z x z x z I dom x ran x z
73 unss x z I dom x ran x z x I dom x ran x z
74 72 73 bitri I dom x ran x z x z x I dom x ran x z
75 74 anbi1i I dom x ran x z x z z z z x I dom x ran x z z z z
76 71 75 bitr2i x I dom x ran x z z z z I dom x ran x z x z z z z
77 76 abbii z | x I dom x ran x z z z z = z | I dom x ran x z x z z z z
78 77 inteqi z | x I dom x ran x z z z z = z | I dom x ran x z x z z z z
79 78 mpteq2i x V z | x I dom x ran x z z z z = x V z | I dom x ran x z x z z z z
80 6 70 79 3eqtri x V y | x y I dom y ran y y y y y = x V z | I dom x ran x z x z z z z
81 1 80 eqtr4i t* = x V y | x y I dom y ran y y y y y