Step |
Hyp |
Ref |
Expression |
1 |
|
df-rtrcl |
|
2 |
|
ancom |
|
3 |
2
|
anbi2i |
|
4 |
3
|
abbii |
|
5 |
4
|
inteqi |
|
6 |
5
|
mpteq2i |
|
7 |
|
vex |
|
8 |
7
|
rtrclexi |
|
9 |
8
|
a1i |
|
10 |
|
dmexg |
|
11 |
|
rnexg |
|
12 |
|
unexg |
|
13 |
10 11 12
|
syl2anc |
|
14 |
|
resiexg |
|
15 |
7 13 14
|
mp2b |
|
16 |
7 15
|
unex |
|
17 |
16
|
trclexi |
|
18 |
17
|
a1i |
|
19 |
|
simpr |
|
20 |
19
|
cotrintab |
|
21 |
20
|
a1i |
|
22 |
7
|
dmex |
|
23 |
7
|
rnex |
|
24 |
12
|
resiexd |
|
25 |
22 23 24
|
mp2an |
|
26 |
7 25
|
unex |
|
27 |
|
dmtrcl |
|
28 |
26 27
|
ax-mp |
|
29 |
|
dmun |
|
30 |
|
dmresi |
|
31 |
30
|
uneq2i |
|
32 |
|
ssun1 |
|
33 |
|
ssequn1 |
|
34 |
32 33
|
mpbi |
|
35 |
29 31 34
|
3eqtri |
|
36 |
28 35
|
eqtri |
|
37 |
|
rntrcl |
|
38 |
26 37
|
ax-mp |
|
39 |
|
rnun |
|
40 |
|
rnresi |
|
41 |
40
|
uneq2i |
|
42 |
|
ssun2 |
|
43 |
|
ssequn1 |
|
44 |
42 43
|
mpbi |
|
45 |
39 41 44
|
3eqtri |
|
46 |
38 45
|
eqtri |
|
47 |
36 46
|
uneq12i |
|
48 |
|
unidm |
|
49 |
47 48
|
eqtri |
|
50 |
49
|
reseq2i |
|
51 |
|
ssun2 |
|
52 |
|
ssmin |
|
53 |
51 52
|
sstri |
|
54 |
50 53
|
eqsstri |
|
55 |
54
|
a1i |
|
56 |
|
simprl |
|
57 |
56
|
cotrintab |
|
58 |
57
|
a1i |
|
59 |
|
id |
|
60 |
59 59
|
coeq12d |
|
61 |
60 59
|
sseq12d |
|
62 |
|
dmeq |
|
63 |
|
rneq |
|
64 |
62 63
|
uneq12d |
|
65 |
64
|
reseq2d |
|
66 |
65 59
|
sseq12d |
|
67 |
|
id |
|
68 |
67 67
|
coeq12d |
|
69 |
68 67
|
sseq12d |
|
70 |
9 18 21 55 58 61 66 69
|
mptrcllem |
|
71 |
|
df-3an |
|
72 |
|
ancom |
|
73 |
|
unss |
|
74 |
72 73
|
bitri |
|
75 |
74
|
anbi1i |
|
76 |
71 75
|
bitr2i |
|
77 |
76
|
abbii |
|
78 |
77
|
inteqi |
|
79 |
78
|
mpteq2i |
|
80 |
6 70 79
|
3eqtri |
|
81 |
1 80
|
eqtr4i |
|