Description: Membership in value of the partial isomorphism C is closed under scalar product. (Contributed by NM, 16-Feb-2014) (Revised by Mario Carneiro, 24-Jun-2014)
Ref | Expression | ||
---|---|---|---|
Hypotheses | dicvscacl.l | |
|
dicvscacl.a | |
||
dicvscacl.h | |
||
dicvscacl.e | |
||
dicvscacl.u | |
||
dicvscacl.i | |
||
dicvscacl.s | |
||
Assertion | dicvscacl | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dicvscacl.l | |
|
2 | dicvscacl.a | |
|
3 | dicvscacl.h | |
|
4 | dicvscacl.e | |
|
5 | dicvscacl.u | |
|
6 | dicvscacl.i | |
|
7 | dicvscacl.s | |
|
8 | simp1 | |
|
9 | simp3l | |
|
10 | eqid | |
|
11 | 1 2 3 6 5 10 | dicssdvh | |
12 | eqid | |
|
13 | 3 12 4 5 10 | dvhvbase | |
14 | 13 | eqcomd | |
15 | 14 | adantr | |
16 | 11 15 | sseqtrrd | |
17 | 16 | 3adant3 | |
18 | simp3r | |
|
19 | 17 18 | sseldd | |
20 | 3 12 4 5 7 | dvhvsca | |
21 | 8 9 19 20 | syl12anc | |
22 | fvi | |
|
23 | 9 22 | syl | |
24 | 23 | coeq1d | |
25 | 24 | opeq2d | |
26 | 21 25 | eqtr4d | |
27 | eqid | |
|
28 | 1 2 3 27 12 6 | dicelval1sta | |
29 | 28 | 3adant3l | |
30 | 29 | fveq2d | |
31 | 1 2 3 4 6 | dicelval2nd | |
32 | 31 | 3adant3l | |
33 | 3 12 4 | tendof | |
34 | 8 32 33 | syl2anc | |
35 | eqid | |
|
36 | 1 35 2 3 | lhpocnel | |
37 | 36 | 3ad2ant1 | |
38 | simp2 | |
|
39 | eqid | |
|
40 | 1 2 3 12 39 | ltrniotacl | |
41 | 8 37 38 40 | syl3anc | |
42 | fvco3 | |
|
43 | 34 41 42 | syl2anc | |
44 | 30 43 | eqtr4d | |
45 | 24 | fveq1d | |
46 | 44 45 | eqtr4d | |
47 | 3 4 | tendococl | |
48 | 8 9 32 47 | syl3anc | |
49 | 24 48 | eqeltrd | |
50 | fvex | |
|
51 | fvex | |
|
52 | fvex | |
|
53 | 51 52 | coex | |
54 | 1 2 3 27 12 4 6 50 53 | dicopelval | |
55 | 54 | 3adant3 | |
56 | 46 49 55 | mpbir2and | |
57 | 26 56 | eqeltrd | |