Metamath Proof Explorer


Theorem dicvscacl

Description: Membership in value of the partial isomorphism C is closed under scalar product. (Contributed by NM, 16-Feb-2014) (Revised by Mario Carneiro, 24-Jun-2014)

Ref Expression
Hypotheses dicvscacl.l ˙=K
dicvscacl.a A=AtomsK
dicvscacl.h H=LHypK
dicvscacl.e E=TEndoKW
dicvscacl.u U=DVecHKW
dicvscacl.i I=DIsoCKW
dicvscacl.s ·˙=U
Assertion dicvscacl KHLWHQA¬Q˙WXEYIQX·˙YIQ

Proof

Step Hyp Ref Expression
1 dicvscacl.l ˙=K
2 dicvscacl.a A=AtomsK
3 dicvscacl.h H=LHypK
4 dicvscacl.e E=TEndoKW
5 dicvscacl.u U=DVecHKW
6 dicvscacl.i I=DIsoCKW
7 dicvscacl.s ·˙=U
8 simp1 KHLWHQA¬Q˙WXEYIQKHLWH
9 simp3l KHLWHQA¬Q˙WXEYIQXE
10 eqid BaseU=BaseU
11 1 2 3 6 5 10 dicssdvh KHLWHQA¬Q˙WIQBaseU
12 eqid LTrnKW=LTrnKW
13 3 12 4 5 10 dvhvbase KHLWHBaseU=LTrnKW×E
14 13 eqcomd KHLWHLTrnKW×E=BaseU
15 14 adantr KHLWHQA¬Q˙WLTrnKW×E=BaseU
16 11 15 sseqtrrd KHLWHQA¬Q˙WIQLTrnKW×E
17 16 3adant3 KHLWHQA¬Q˙WXEYIQIQLTrnKW×E
18 simp3r KHLWHQA¬Q˙WXEYIQYIQ
19 17 18 sseldd KHLWHQA¬Q˙WXEYIQYLTrnKW×E
20 3 12 4 5 7 dvhvsca KHLWHXEYLTrnKW×EX·˙Y=X1stYX2ndY
21 8 9 19 20 syl12anc KHLWHQA¬Q˙WXEYIQX·˙Y=X1stYX2ndY
22 fvi XEIX=X
23 9 22 syl KHLWHQA¬Q˙WXEYIQIX=X
24 23 coeq1d KHLWHQA¬Q˙WXEYIQIX2ndY=X2ndY
25 24 opeq2d KHLWHQA¬Q˙WXEYIQX1stYIX2ndY=X1stYX2ndY
26 21 25 eqtr4d KHLWHQA¬Q˙WXEYIQX·˙Y=X1stYIX2ndY
27 eqid ocKW=ocKW
28 1 2 3 27 12 6 dicelval1sta KHLWHQA¬Q˙WYIQ1stY=2ndYιgLTrnKW|gocKW=Q
29 28 3adant3l KHLWHQA¬Q˙WXEYIQ1stY=2ndYιgLTrnKW|gocKW=Q
30 29 fveq2d KHLWHQA¬Q˙WXEYIQX1stY=X2ndYιgLTrnKW|gocKW=Q
31 1 2 3 4 6 dicelval2nd KHLWHQA¬Q˙WYIQ2ndYE
32 31 3adant3l KHLWHQA¬Q˙WXEYIQ2ndYE
33 3 12 4 tendof KHLWH2ndYE2ndY:LTrnKWLTrnKW
34 8 32 33 syl2anc KHLWHQA¬Q˙WXEYIQ2ndY:LTrnKWLTrnKW
35 eqid ocK=ocK
36 1 35 2 3 lhpocnel KHLWHocKWA¬ocKW˙W
37 36 3ad2ant1 KHLWHQA¬Q˙WXEYIQocKWA¬ocKW˙W
38 simp2 KHLWHQA¬Q˙WXEYIQQA¬Q˙W
39 eqid ιgLTrnKW|gocKW=Q=ιgLTrnKW|gocKW=Q
40 1 2 3 12 39 ltrniotacl KHLWHocKWA¬ocKW˙WQA¬Q˙WιgLTrnKW|gocKW=QLTrnKW
41 8 37 38 40 syl3anc KHLWHQA¬Q˙WXEYIQιgLTrnKW|gocKW=QLTrnKW
42 fvco3 2ndY:LTrnKWLTrnKWιgLTrnKW|gocKW=QLTrnKWX2ndYιgLTrnKW|gocKW=Q=X2ndYιgLTrnKW|gocKW=Q
43 34 41 42 syl2anc KHLWHQA¬Q˙WXEYIQX2ndYιgLTrnKW|gocKW=Q=X2ndYιgLTrnKW|gocKW=Q
44 30 43 eqtr4d KHLWHQA¬Q˙WXEYIQX1stY=X2ndYιgLTrnKW|gocKW=Q
45 24 fveq1d KHLWHQA¬Q˙WXEYIQIX2ndYιgLTrnKW|gocKW=Q=X2ndYιgLTrnKW|gocKW=Q
46 44 45 eqtr4d KHLWHQA¬Q˙WXEYIQX1stY=IX2ndYιgLTrnKW|gocKW=Q
47 3 4 tendococl KHLWHXE2ndYEX2ndYE
48 8 9 32 47 syl3anc KHLWHQA¬Q˙WXEYIQX2ndYE
49 24 48 eqeltrd KHLWHQA¬Q˙WXEYIQIX2ndYE
50 fvex X1stYV
51 fvex IXV
52 fvex 2ndYV
53 51 52 coex IX2ndYV
54 1 2 3 27 12 4 6 50 53 dicopelval KHLWHQA¬Q˙WX1stYIX2ndYIQX1stY=IX2ndYιgLTrnKW|gocKW=QIX2ndYE
55 54 3adant3 KHLWHQA¬Q˙WXEYIQX1stYIX2ndYIQX1stY=IX2ndYιgLTrnKW|gocKW=QIX2ndYE
56 46 49 55 mpbir2and KHLWHQA¬Q˙WXEYIQX1stYIX2ndYIQ
57 26 56 eqeltrd KHLWHQA¬Q˙WXEYIQX·˙YIQ