Description: Extend dia2dim to isomorphism H. (This version combines dib2dim and dih2dimb for shorter overall proof, but may be less easy to understand. TODO: decide which to use.) (Contributed by NM, 22-Sep-2014) (Proof modification is discouraged.) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypotheses | dih2dimb.l | |
|
dih2dimb.j | |
||
dih2dimb.a | |
||
dih2dimb.h | |
||
dih2dimb.u | |
||
dih2dimb.s | |
||
dih2dimb.i | |
||
dih2dimb.k | |
||
dih2dimb.p | |
||
dih2dimb.q | |
||
Assertion | dih2dimbALTN | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dih2dimb.l | |
|
2 | dih2dimb.j | |
|
3 | dih2dimb.a | |
|
4 | dih2dimb.h | |
|
5 | dih2dimb.u | |
|
6 | dih2dimb.s | |
|
7 | dih2dimb.i | |
|
8 | dih2dimb.k | |
|
9 | dih2dimb.p | |
|
10 | dih2dimb.q | |
|
11 | eqid | |
|
12 | 4 11 | dibvalrel | |
13 | 8 12 | syl | |
14 | eqid | |
|
15 | eqid | |
|
16 | eqid | |
|
17 | 1 2 3 4 14 15 16 8 9 10 | dia2dim | |
18 | 17 | sseld | |
19 | 18 | anim1d | |
20 | 8 | simpld | |
21 | 9 | simpld | |
22 | 10 | simpld | |
23 | eqid | |
|
24 | 23 2 3 | hlatjcl | |
25 | 20 21 22 24 | syl3anc | |
26 | 9 | simprd | |
27 | 10 | simprd | |
28 | hllat | |
|
29 | 20 28 | syl | |
30 | 23 3 | atbase | |
31 | 21 30 | syl | |
32 | 23 3 | atbase | |
33 | 22 32 | syl | |
34 | 8 | simprd | |
35 | 23 4 | lhpbase | |
36 | 34 35 | syl | |
37 | 23 1 2 | latjle12 | |
38 | 29 31 33 36 37 | syl13anc | |
39 | 26 27 38 | mpbi2and | |
40 | eqid | |
|
41 | eqid | |
|
42 | 23 1 4 40 41 16 11 | dibopelval2 | |
43 | 8 25 39 42 | syl12anc | |
44 | 31 26 | jca | |
45 | 33 27 | jca | |
46 | 23 1 4 40 41 14 5 15 6 16 11 8 44 45 | diblsmopel | |
47 | 19 43 46 | 3imtr4d | |
48 | 13 47 | relssdv | |
49 | 23 1 4 7 11 | dihvalb | |
50 | 8 25 39 49 | syl12anc | |
51 | 23 1 4 7 11 | dihvalb | |
52 | 8 31 26 51 | syl12anc | |
53 | 23 1 4 7 11 | dihvalb | |
54 | 8 33 27 53 | syl12anc | |
55 | 52 54 | oveq12d | |
56 | 48 50 55 | 3sstr4d | |