Metamath Proof Explorer


Theorem dih2dimbALTN

Description: Extend dia2dim to isomorphism H. (This version combines dib2dim and dih2dimb for shorter overall proof, but may be less easy to understand. TODO: decide which to use.) (Contributed by NM, 22-Sep-2014) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses dih2dimb.l ˙=K
dih2dimb.j ˙=joinK
dih2dimb.a A=AtomsK
dih2dimb.h H=LHypK
dih2dimb.u U=DVecHKW
dih2dimb.s ˙=LSSumU
dih2dimb.i I=DIsoHKW
dih2dimb.k φKHLWH
dih2dimb.p φPAP˙W
dih2dimb.q φQAQ˙W
Assertion dih2dimbALTN φIP˙QIP˙IQ

Proof

Step Hyp Ref Expression
1 dih2dimb.l ˙=K
2 dih2dimb.j ˙=joinK
3 dih2dimb.a A=AtomsK
4 dih2dimb.h H=LHypK
5 dih2dimb.u U=DVecHKW
6 dih2dimb.s ˙=LSSumU
7 dih2dimb.i I=DIsoHKW
8 dih2dimb.k φKHLWH
9 dih2dimb.p φPAP˙W
10 dih2dimb.q φQAQ˙W
11 eqid DIsoBKW=DIsoBKW
12 4 11 dibvalrel KHLWHRelDIsoBKWP˙Q
13 8 12 syl φRelDIsoBKWP˙Q
14 eqid DVecAKW=DVecAKW
15 eqid LSSumDVecAKW=LSSumDVecAKW
16 eqid DIsoAKW=DIsoAKW
17 1 2 3 4 14 15 16 8 9 10 dia2dim φDIsoAKWP˙QDIsoAKWPLSSumDVecAKWDIsoAKWQ
18 17 sseld φfDIsoAKWP˙QfDIsoAKWPLSSumDVecAKWDIsoAKWQ
19 18 anim1d φfDIsoAKWP˙Qs=fLTrnKWIBaseKfDIsoAKWPLSSumDVecAKWDIsoAKWQs=fLTrnKWIBaseK
20 8 simpld φKHL
21 9 simpld φPA
22 10 simpld φQA
23 eqid BaseK=BaseK
24 23 2 3 hlatjcl KHLPAQAP˙QBaseK
25 20 21 22 24 syl3anc φP˙QBaseK
26 9 simprd φP˙W
27 10 simprd φQ˙W
28 hllat KHLKLat
29 20 28 syl φKLat
30 23 3 atbase PAPBaseK
31 21 30 syl φPBaseK
32 23 3 atbase QAQBaseK
33 22 32 syl φQBaseK
34 8 simprd φWH
35 23 4 lhpbase WHWBaseK
36 34 35 syl φWBaseK
37 23 1 2 latjle12 KLatPBaseKQBaseKWBaseKP˙WQ˙WP˙Q˙W
38 29 31 33 36 37 syl13anc φP˙WQ˙WP˙Q˙W
39 26 27 38 mpbi2and φP˙Q˙W
40 eqid LTrnKW=LTrnKW
41 eqid fLTrnKWIBaseK=fLTrnKWIBaseK
42 23 1 4 40 41 16 11 dibopelval2 KHLWHP˙QBaseKP˙Q˙WfsDIsoBKWP˙QfDIsoAKWP˙Qs=fLTrnKWIBaseK
43 8 25 39 42 syl12anc φfsDIsoBKWP˙QfDIsoAKWP˙Qs=fLTrnKWIBaseK
44 31 26 jca φPBaseKP˙W
45 33 27 jca φQBaseKQ˙W
46 23 1 4 40 41 14 5 15 6 16 11 8 44 45 diblsmopel φfsDIsoBKWP˙DIsoBKWQfDIsoAKWPLSSumDVecAKWDIsoAKWQs=fLTrnKWIBaseK
47 19 43 46 3imtr4d φfsDIsoBKWP˙QfsDIsoBKWP˙DIsoBKWQ
48 13 47 relssdv φDIsoBKWP˙QDIsoBKWP˙DIsoBKWQ
49 23 1 4 7 11 dihvalb KHLWHP˙QBaseKP˙Q˙WIP˙Q=DIsoBKWP˙Q
50 8 25 39 49 syl12anc φIP˙Q=DIsoBKWP˙Q
51 23 1 4 7 11 dihvalb KHLWHPBaseKP˙WIP=DIsoBKWP
52 8 31 26 51 syl12anc φIP=DIsoBKWP
53 23 1 4 7 11 dihvalb KHLWHQBaseKQ˙WIQ=DIsoBKWQ
54 8 33 27 53 syl12anc φIQ=DIsoBKWQ
55 52 54 oveq12d φIP˙IQ=DIsoBKWP˙DIsoBKWQ
56 48 50 55 3sstr4d φIP˙QIP˙IQ