Metamath Proof Explorer


Theorem discr1

Description: A nonnegative quadratic form has nonnegative leading coefficient. (Contributed by Mario Carneiro, 4-Jun-2014)

Ref Expression
Hypotheses discr.1 φA
discr.2 φB
discr.3 φC
discr.4 φx0Ax2+Bx+C
discr1.5 X=if1B+if0CC0+1AB+if0CC0+1A1
Assertion discr1 φ0A

Proof

Step Hyp Ref Expression
1 discr.1 φA
2 discr.2 φB
3 discr.3 φC
4 discr.4 φx0Ax2+Bx+C
5 discr1.5 X=if1B+if0CC0+1AB+if0CC0+1A1
6 oveq1 x=Xx2=X2
7 6 oveq2d x=XAx2=AX2
8 oveq2 x=XBx=BX
9 7 8 oveq12d x=XAx2+Bx=AX2+BX
10 9 oveq1d x=XAx2+Bx+C=AX2+BX+C
11 10 breq2d x=X0Ax2+Bx+C0AX2+BX+C
12 4 ralrimiva φx0Ax2+Bx+C
13 12 adantr φA<0x0Ax2+Bx+C
14 2 adantr φA<0B
15 3 adantr φA<0C
16 0re 0
17 ifcl C0if0CC0
18 15 16 17 sylancl φA<0if0CC0
19 14 18 readdcld φA<0B+if0CC0
20 peano2re B+if0CC0B+if0CC0+1
21 19 20 syl φA<0B+if0CC0+1
22 1 adantr φA<0A
23 22 renegcld φA<0A
24 1 lt0neg1d φA<00<A
25 24 biimpa φA<00<A
26 25 gt0ne0d φA<0A0
27 21 23 26 redivcld φA<0B+if0CC0+1A
28 1re 1
29 ifcl B+if0CC0+1A1if1B+if0CC0+1AB+if0CC0+1A1
30 27 28 29 sylancl φA<0if1B+if0CC0+1AB+if0CC0+1A1
31 5 30 eqeltrid φA<0X
32 11 13 31 rspcdva φA<00AX2+BX+C
33 resqcl XX2
34 31 33 syl φA<0X2
35 22 34 remulcld φA<0AX2
36 14 31 remulcld φA<0BX
37 35 36 readdcld φA<0AX2+BX
38 37 15 readdcld φA<0AX2+BX+C
39 22 31 remulcld φA<0AX
40 39 19 readdcld φA<0AX+B+if0CC0
41 40 31 remulcld φA<0AX+B+if0CC0X
42 16 a1i φA<00
43 18 31 remulcld φA<0if0CC0X
44 max2 0CCif0CC0
45 16 15 44 sylancr φA<0Cif0CC0
46 max1 0C0if0CC0
47 16 15 46 sylancr φA<00if0CC0
48 max1 1B+if0CC0+1A1if1B+if0CC0+1AB+if0CC0+1A1
49 28 27 48 sylancr φA<01if1B+if0CC0+1AB+if0CC0+1A1
50 49 5 breqtrrdi φA<01X
51 18 31 47 50 lemulge11d φA<0if0CC0if0CC0X
52 15 18 43 45 51 letrd φA<0Cif0CC0X
53 15 43 37 52 leadd2dd φA<0AX2+BX+CAX2+BX+if0CC0X
54 39 14 readdcld φA<0AX+B
55 54 recnd φA<0AX+B
56 18 recnd φA<0if0CC0
57 31 recnd φA<0X
58 55 56 57 adddird φA<0AX+B+if0CC0X=AX+BX+if0CC0X
59 39 recnd φA<0AX
60 14 recnd φA<0B
61 59 60 56 addassd φA<0AX+B+if0CC0=AX+B+if0CC0
62 61 oveq1d φA<0AX+B+if0CC0X=AX+B+if0CC0X
63 22 recnd φA<0A
64 63 57 57 mulassd φA<0AXX=AXX
65 sqval XX2=XX
66 57 65 syl φA<0X2=XX
67 66 oveq2d φA<0AX2=AXX
68 64 67 eqtr4d φA<0AXX=AX2
69 68 oveq1d φA<0AXX+BX=AX2+BX
70 59 57 60 69 joinlmuladdmuld φA<0AX+BX=AX2+BX
71 70 oveq1d φA<0AX+BX+if0CC0X=AX2+BX+if0CC0X
72 58 62 71 3eqtr3d φA<0AX+B+if0CC0X=AX2+BX+if0CC0X
73 53 72 breqtrrd φA<0AX2+BX+CAX+B+if0CC0X
74 23 31 remulcld φA<0AX
75 19 ltp1d φA<0B+if0CC0<B+if0CC0+1
76 max2 1B+if0CC0+1AB+if0CC0+1Aif1B+if0CC0+1AB+if0CC0+1A1
77 28 27 76 sylancr φA<0B+if0CC0+1Aif1B+if0CC0+1AB+if0CC0+1A1
78 77 5 breqtrrdi φA<0B+if0CC0+1AX
79 ledivmul B+if0CC0+1XA0<AB+if0CC0+1AXB+if0CC0+1AX
80 21 31 23 25 79 syl112anc φA<0B+if0CC0+1AXB+if0CC0+1AX
81 78 80 mpbid φA<0B+if0CC0+1AX
82 19 21 74 75 81 ltletrd φA<0B+if0CC0<AX
83 63 57 mulneg1d φA<0AX=AX
84 df-neg AX=0AX
85 83 84 eqtrdi φA<0AX=0AX
86 82 85 breqtrd φA<0B+if0CC0<0AX
87 39 19 42 ltaddsub2d φA<0AX+B+if0CC0<0B+if0CC0<0AX
88 86 87 mpbird φA<0AX+B+if0CC0<0
89 28 a1i φA<01
90 0lt1 0<1
91 90 a1i φA<00<1
92 42 89 31 91 50 ltletrd φA<00<X
93 ltmul1 AX+B+if0CC00X0<XAX+B+if0CC0<0AX+B+if0CC0X<0X
94 40 42 31 92 93 syl112anc φA<0AX+B+if0CC0<0AX+B+if0CC0X<0X
95 88 94 mpbid φA<0AX+B+if0CC0X<0X
96 57 mul02d φA<00X=0
97 95 96 breqtrd φA<0AX+B+if0CC0X<0
98 38 41 42 73 97 lelttrd φA<0AX2+BX+C<0
99 ltnle AX2+BX+C0AX2+BX+C<0¬0AX2+BX+C
100 38 16 99 sylancl φA<0AX2+BX+C<0¬0AX2+BX+C
101 98 100 mpbid φA<0¬0AX2+BX+C
102 32 101 pm2.65da φ¬A<0
103 lelttric 0A0AA<0
104 16 1 103 sylancr φ0AA<0
105 104 ord φ¬0AA<0
106 102 105 mt3d φ0A