Metamath Proof Explorer


Theorem disjf1o

Description: A bijection built from disjoint sets. (Contributed by Glauco Siliprandi, 17-Aug-2020)

Ref Expression
Hypotheses disjf1o.xph xφ
disjf1o.f F=xAB
disjf1o.b φxABV
disjf1o.dj φDisjxAB
disjf1o.d C=xA|B
disjf1o.e D=ranF
Assertion disjf1o φFC:C1-1 ontoD

Proof

Step Hyp Ref Expression
1 disjf1o.xph xφ
2 disjf1o.f F=xAB
3 disjf1o.b φxABV
4 disjf1o.dj φDisjxAB
5 disjf1o.d C=xA|B
6 disjf1o.e D=ranF
7 eqid xCB=xCB
8 simpl φxCφ
9 ssrab2 xA|BA
10 5 9 eqsstri CA
11 id xCxC
12 10 11 sselid xCxA
13 12 adantl φxCxA
14 8 13 3 syl2anc φxCBV
15 11 5 eleqtrdi xCxxA|B
16 rabid xxA|BxAB
17 16 a1i xCxxA|BxAB
18 15 17 mpbid xCxAB
19 18 simprd xCB
20 19 adantl φxCB
21 10 a1i φCA
22 disjss1 CADisjxABDisjxCB
23 21 4 22 sylc φDisjxCB
24 1 7 14 20 23 disjf1 φxCB:C1-1V
25 f1f1orn xCB:C1-1VxCB:C1-1 ontoranxCB
26 24 25 syl φxCB:C1-1 ontoranxCB
27 2 a1i φF=xAB
28 27 reseq1d φFC=xABC
29 21 resmptd φxABC=xCB
30 28 29 eqtrd φFC=xCB
31 eqidd φC=C
32 simpl φyDφ
33 id yDyD
34 33 6 eleqtrdi yDyranF
35 eldifsni yranFy
36 34 35 syl yDy
37 36 adantl φyDy
38 eldifi yranFyranF
39 34 38 syl yDyranF
40 2 elrnmpt yranFyranFxAy=B
41 39 40 syl yDyranFxAy=B
42 39 41 mpbid yDxAy=B
43 42 adantl φyDxAy=B
44 nfv xy
45 1 44 nfan xφy
46 nfcv _xy
47 nfmpt1 _xxCB
48 47 nfrn _xranxCB
49 46 48 nfel xyranxCB
50 simp3 yxAy=By=B
51 simp2 yxAy=BxA
52 id y=By=B
53 52 eqcomd y=BB=y
54 53 adantl yy=BB=y
55 simpl yy=By
56 54 55 eqnetrd yy=BB
57 56 3adant2 yxAy=BB
58 51 57 jca yxAy=BxAB
59 58 16 sylibr yxAy=BxxA|B
60 5 eqcomi xA|B=C
61 60 a1i yxAy=BxA|B=C
62 59 61 eleqtrd yxAy=BxC
63 eqvisset y=BBV
64 63 3ad2ant3 yxAy=BBV
65 7 elrnmpt1 xCBVBranxCB
66 62 64 65 syl2anc yxAy=BBranxCB
67 50 66 eqeltrd yxAy=ByranxCB
68 67 3adant1l φyxAy=ByranxCB
69 68 3exp φyxAy=ByranxCB
70 45 49 69 rexlimd φyxAy=ByranxCB
71 70 imp φyxAy=ByranxCB
72 32 37 43 71 syl21anc φyDyranxCB
73 72 ralrimiva φyDyranxCB
74 dfss3 DranxCByDyranxCB
75 73 74 sylibr φDranxCB
76 simpl φyranxCBφ
77 vex yV
78 7 elrnmpt yVyranxCBxCy=B
79 77 78 ax-mp yranxCBxCy=B
80 79 biimpi yranxCBxCy=B
81 80 adantl φyranxCBxCy=B
82 nfv xyD
83 simpr xCy=By=B
84 12 adantr xCy=BxA
85 83 63 syl xCy=BBV
86 2 elrnmpt1 xABVBranF
87 84 85 86 syl2anc xCy=BBranF
88 83 87 eqeltrd xCy=ByranF
89 88 3adant1 φxCy=ByranF
90 19 adantr xCy=BB
91 83 90 eqnetrd xCy=By
92 nelsn y¬y
93 91 92 syl xCy=B¬y
94 93 3adant1 φxCy=B¬y
95 89 94 eldifd φxCy=ByranF
96 95 6 eleqtrrdi φxCy=ByD
97 96 3exp φxCy=ByD
98 1 82 97 rexlimd φxCy=ByD
99 98 imp φxCy=ByD
100 76 81 99 syl2anc φyranxCByD
101 75 100 eqelssd φD=ranxCB
102 30 31 101 f1oeq123d φFC:C1-1 ontoDxCB:C1-1 ontoranxCB
103 26 102 mpbird φFC:C1-1 ontoD