Metamath Proof Explorer


Theorem ditgsplitlem

Description: Lemma for ditgsplit . (Contributed by Mario Carneiro, 13-Aug-2014)

Ref Expression
Hypotheses ditgsplit.x φX
ditgsplit.y φY
ditgsplit.a φAXY
ditgsplit.b φBXY
ditgsplit.c φCXY
ditgsplit.d φxXYDV
ditgsplit.i φxXYD𝐿1
ditgsplit.1 ψθABBC
Assertion ditgsplitlem φψθACDdx=ABDdx+BCDdx

Proof

Step Hyp Ref Expression
1 ditgsplit.x φX
2 ditgsplit.y φY
3 ditgsplit.a φAXY
4 ditgsplit.b φBXY
5 ditgsplit.c φCXY
6 ditgsplit.d φxXYDV
7 ditgsplit.i φxXYD𝐿1
8 ditgsplit.1 ψθABBC
9 elicc2 XYAXYAXAAY
10 1 2 9 syl2anc φAXYAXAAY
11 3 10 mpbid φAXAAY
12 11 simp1d φA
13 12 adantr φψθA
14 elicc2 XYCXYCXCCY
15 1 2 14 syl2anc φCXYCXCCY
16 5 15 mpbid φCXCCY
17 16 simp1d φC
18 17 adantr φψθC
19 elicc2 XYBXYBXBBY
20 1 2 19 syl2anc φBXYBXBBY
21 4 20 mpbid φBXBBY
22 21 simp1d φB
23 22 adantr φψθB
24 simpr φψθψθ
25 24 8 sylib φψθABBC
26 25 simpld φψθAB
27 25 simprd φψθBC
28 elicc2 ACBACBABBC
29 12 17 28 syl2anc φBACBABBC
30 29 adantr φψθBACBABBC
31 23 26 27 30 mpbir3and φψθBAC
32 1 rexrd φX*
33 11 simp2d φXA
34 iooss1 X*XAACXC
35 32 33 34 syl2anc φACXC
36 2 rexrd φY*
37 16 simp3d φCY
38 iooss2 Y*CYXCXY
39 36 37 38 syl2anc φXCXY
40 35 39 sstrd φACXY
41 40 sselda φxACxXY
42 iblmbf xXYD𝐿1xXYDMblFn
43 7 42 syl φxXYDMblFn
44 43 6 mbfmptcl φxXYD
45 41 44 syldan φxACD
46 45 adantlr φψθxACD
47 iooss1 X*XAABXB
48 32 33 47 syl2anc φABXB
49 21 simp3d φBY
50 iooss2 Y*BYXBXY
51 36 49 50 syl2anc φXBXY
52 48 51 sstrd φABXY
53 ioombl ABdomvol
54 53 a1i φABdomvol
55 52 54 6 7 iblss φxABD𝐿1
56 55 adantr φψθxABD𝐿1
57 21 simp2d φXB
58 iooss1 X*XBBCXC
59 32 57 58 syl2anc φBCXC
60 59 39 sstrd φBCXY
61 ioombl BCdomvol
62 61 a1i φBCdomvol
63 60 62 6 7 iblss φxBCD𝐿1
64 63 adantr φψθxBCD𝐿1
65 13 18 31 46 56 64 itgsplitioo φψθACDdx=ABDdx+BCDdx
66 13 23 18 26 27 letrd φψθAC
67 66 ditgpos φψθACDdx=ACDdx
68 26 ditgpos φψθABDdx=ABDdx
69 27 ditgpos φψθBCDdx=BCDdx
70 68 69 oveq12d φψθABDdx+BCDdx=ABDdx+BCDdx
71 65 67 70 3eqtr4d φψθACDdx=ABDdx+BCDdx
72 71 anassrs φψθACDdx=ABDdx+BCDdx