Metamath Proof Explorer


Theorem djhcvat42

Description: A covering property. ( cvrat42 analog.) (Contributed by NM, 17-Aug-2014)

Ref Expression
Hypotheses djhcvat42.h H = LHyp K
djhcvat42.u U = DVecH K W
djhcvat42.v V = Base U
djhcvat42.o 0 ˙ = 0 U
djhcvat42.n N = LSpan U
djhcvat42.i I = DIsoH K W
djhcvat42.j ˙ = joinH K W
djhcvat42.k φ K HL W H
djhcvat42.s φ S ran I
djhcvat42.x φ X V 0 ˙
djhcvat42.y φ Y V 0 ˙
Assertion djhcvat42 φ S 0 ˙ N X S ˙ N Y z V 0 ˙ N z S N X N z ˙ N Y

Proof

Step Hyp Ref Expression
1 djhcvat42.h H = LHyp K
2 djhcvat42.u U = DVecH K W
3 djhcvat42.v V = Base U
4 djhcvat42.o 0 ˙ = 0 U
5 djhcvat42.n N = LSpan U
6 djhcvat42.i I = DIsoH K W
7 djhcvat42.j ˙ = joinH K W
8 djhcvat42.k φ K HL W H
9 djhcvat42.s φ S ran I
10 djhcvat42.x φ X V 0 ˙
11 djhcvat42.y φ Y V 0 ˙
12 8 simpld φ K HL
13 eqid Base K = Base K
14 13 1 6 dihcnvcl K HL W H S ran I I -1 S Base K
15 8 9 14 syl2anc φ I -1 S Base K
16 10 eldifad φ X V
17 eldifsni X V 0 ˙ X 0 ˙
18 10 17 syl φ X 0 ˙
19 eqid Atoms K = Atoms K
20 19 1 2 3 4 5 6 dihlspsnat K HL W H X V X 0 ˙ I -1 N X Atoms K
21 8 16 18 20 syl3anc φ I -1 N X Atoms K
22 11 eldifad φ Y V
23 eldifsni Y V 0 ˙ Y 0 ˙
24 11 23 syl φ Y 0 ˙
25 19 1 2 3 4 5 6 dihlspsnat K HL W H Y V Y 0 ˙ I -1 N Y Atoms K
26 8 22 24 25 syl3anc φ I -1 N Y Atoms K
27 eqid K = K
28 eqid join K = join K
29 eqid 0. K = 0. K
30 13 27 28 29 19 cvrat42 K HL I -1 S Base K I -1 N X Atoms K I -1 N Y Atoms K I -1 S 0. K I -1 N X K I -1 S join K I -1 N Y r Atoms K r K I -1 S I -1 N X K r join K I -1 N Y
31 12 15 21 26 30 syl13anc φ I -1 S 0. K I -1 N X K I -1 S join K I -1 N Y r Atoms K r K I -1 S I -1 N X K r join K I -1 N Y
32 1 29 6 2 3 4 5 8 9 dih0sb φ S = 0 ˙ I -1 S = 0. K
33 32 necon3bid φ S 0 ˙ I -1 S 0. K
34 1 2 3 5 6 dihlsprn K HL W H X V N X ran I
35 8 16 34 syl2anc φ N X ran I
36 1 2 6 3 dihrnss K HL W H S ran I S V
37 8 9 36 syl2anc φ S V
38 1 2 3 5 6 dihlsprn K HL W H Y V N Y ran I
39 8 22 38 syl2anc φ N Y ran I
40 1 2 6 3 dihrnss K HL W H N Y ran I N Y V
41 8 39 40 syl2anc φ N Y V
42 1 6 2 3 7 djhcl K HL W H S V N Y V S ˙ N Y ran I
43 8 37 41 42 syl12anc φ S ˙ N Y ran I
44 27 1 6 8 35 43 dihcnvord φ I -1 N X K I -1 S ˙ N Y N X S ˙ N Y
45 28 1 6 7 8 9 39 djhj φ I -1 S ˙ N Y = I -1 S join K I -1 N Y
46 45 breq2d φ I -1 N X K I -1 S ˙ N Y I -1 N X K I -1 S join K I -1 N Y
47 44 46 bitr3d φ N X S ˙ N Y I -1 N X K I -1 S join K I -1 N Y
48 33 47 anbi12d φ S 0 ˙ N X S ˙ N Y I -1 S 0. K I -1 N X K I -1 S join K I -1 N Y
49 8 adantr φ z V 0 ˙ K HL W H
50 eldifi z V 0 ˙ z V
51 50 adantl φ z V 0 ˙ z V
52 eldifsni z V 0 ˙ z 0 ˙
53 52 adantl φ z V 0 ˙ z 0 ˙
54 19 1 2 3 4 5 6 dihlspsnat K HL W H z V z 0 ˙ I -1 N z Atoms K
55 49 51 53 54 syl3anc φ z V 0 ˙ I -1 N z Atoms K
56 19 1 2 3 4 5 6 8 dihatexv2 φ r Atoms K z V 0 ˙ r = I -1 N z
57 breq1 r = I -1 N z r K I -1 S I -1 N z K I -1 S
58 oveq1 r = I -1 N z r join K I -1 N Y = I -1 N z join K I -1 N Y
59 58 breq2d r = I -1 N z I -1 N X K r join K I -1 N Y I -1 N X K I -1 N z join K I -1 N Y
60 57 59 anbi12d r = I -1 N z r K I -1 S I -1 N X K r join K I -1 N Y I -1 N z K I -1 S I -1 N X K I -1 N z join K I -1 N Y
61 60 adantl φ r = I -1 N z r K I -1 S I -1 N X K r join K I -1 N Y I -1 N z K I -1 S I -1 N X K I -1 N z join K I -1 N Y
62 55 56 61 rexxfr2d φ r Atoms K r K I -1 S I -1 N X K r join K I -1 N Y z V 0 ˙ I -1 N z K I -1 S I -1 N X K I -1 N z join K I -1 N Y
63 1 2 3 5 6 dihlsprn K HL W H z V N z ran I
64 49 51 63 syl2anc φ z V 0 ˙ N z ran I
65 9 adantr φ z V 0 ˙ S ran I
66 27 1 6 49 64 65 dihcnvord φ z V 0 ˙ I -1 N z K I -1 S N z S
67 39 adantr φ z V 0 ˙ N Y ran I
68 28 1 6 7 49 64 67 djhj φ z V 0 ˙ I -1 N z ˙ N Y = I -1 N z join K I -1 N Y
69 68 breq2d φ z V 0 ˙ I -1 N X K I -1 N z ˙ N Y I -1 N X K I -1 N z join K I -1 N Y
70 16 adantr φ z V 0 ˙ X V
71 49 70 34 syl2anc φ z V 0 ˙ N X ran I
72 1 2 6 3 dihrnss K HL W H N z ran I N z V
73 49 64 72 syl2anc φ z V 0 ˙ N z V
74 41 adantr φ z V 0 ˙ N Y V
75 1 6 2 3 7 djhcl K HL W H N z V N Y V N z ˙ N Y ran I
76 49 73 74 75 syl12anc φ z V 0 ˙ N z ˙ N Y ran I
77 27 1 6 49 71 76 dihcnvord φ z V 0 ˙ I -1 N X K I -1 N z ˙ N Y N X N z ˙ N Y
78 69 77 bitr3d φ z V 0 ˙ I -1 N X K I -1 N z join K I -1 N Y N X N z ˙ N Y
79 66 78 anbi12d φ z V 0 ˙ I -1 N z K I -1 S I -1 N X K I -1 N z join K I -1 N Y N z S N X N z ˙ N Y
80 79 rexbidva φ z V 0 ˙ I -1 N z K I -1 S I -1 N X K I -1 N z join K I -1 N Y z V 0 ˙ N z S N X N z ˙ N Y
81 62 80 bitr2d φ z V 0 ˙ N z S N X N z ˙ N Y r Atoms K r K I -1 S I -1 N X K r join K I -1 N Y
82 31 48 81 3imtr4d φ S 0 ˙ N X S ˙ N Y z V 0 ˙ N z S N X N z ˙ N Y