Metamath Proof Explorer


Theorem dprdss

Description: Create a direct product by finding subgroups inside each factor of another direct product. (Contributed by Mario Carneiro, 25-Apr-2016)

Ref Expression
Hypotheses dprdss.1 φGdomDProdT
dprdss.2 φdomT=I
dprdss.3 φS:ISubGrpG
dprdss.4 φkISkTk
Assertion dprdss φGdomDProdSGDProdSGDProdT

Proof

Step Hyp Ref Expression
1 dprdss.1 φGdomDProdT
2 dprdss.2 φdomT=I
3 dprdss.3 φS:ISubGrpG
4 dprdss.4 φkISkTk
5 eqid CntzG=CntzG
6 eqid 0G=0G
7 eqid mrClsSubGrpG=mrClsSubGrpG
8 dprdgrp GdomDProdTGGrp
9 1 8 syl φGGrp
10 1 2 dprddomcld φIV
11 4 ralrimiva φkISkTk
12 fveq2 k=xSk=Sx
13 fveq2 k=xTk=Tx
14 12 13 sseq12d k=xSkTkSxTx
15 14 rspcv xIkISkTkSxTx
16 11 15 mpan9 φxISxTx
17 16 3ad2antr1 φxIyIxySxTx
18 1 adantr φxIyIxyGdomDProdT
19 2 adantr φxIyIxydomT=I
20 simpr1 φxIyIxyxI
21 simpr2 φxIyIxyyI
22 simpr3 φxIyIxyxy
23 18 19 20 21 22 5 dprdcntz φxIyIxyTxCntzGTy
24 1 2 dprdf2 φT:ISubGrpG
25 24 adantr φxIyIxyT:ISubGrpG
26 25 21 ffvelcdmd φxIyIxyTySubGrpG
27 eqid BaseG=BaseG
28 27 subgss TySubGrpGTyBaseG
29 26 28 syl φxIyIxyTyBaseG
30 fveq2 k=ySk=Sy
31 fveq2 k=yTk=Ty
32 30 31 sseq12d k=ySkTkSyTy
33 11 adantr φxIyIxykISkTk
34 32 33 21 rspcdva φxIyIxySyTy
35 27 5 cntz2ss TyBaseGSyTyCntzGTyCntzGSy
36 29 34 35 syl2anc φxIyIxyCntzGTyCntzGSy
37 23 36 sstrd φxIyIxyTxCntzGSy
38 17 37 sstrd φxIyIxySxCntzGSy
39 9 adantr φxIGGrp
40 27 subgacs GGrpSubGrpGACSBaseG
41 acsmre SubGrpGACSBaseGSubGrpGMooreBaseG
42 39 40 41 3syl φxISubGrpGMooreBaseG
43 difss IxI
44 11 adantr φxIkISkTk
45 ssralv IxIkISkTkkIxSkTk
46 43 44 45 mpsyl φxIkIxSkTk
47 ss2iun kIxSkTkkIxSkkIxTk
48 46 47 syl φxIkIxSkkIxTk
49 3 adantr φxIS:ISubGrpG
50 ffun S:ISubGrpGFunS
51 funiunfv FunSkIxSk=SIx
52 49 50 51 3syl φxIkIxSk=SIx
53 24 adantr φxIT:ISubGrpG
54 ffun T:ISubGrpGFunT
55 funiunfv FunTkIxTk=TIx
56 53 54 55 3syl φxIkIxTk=TIx
57 48 52 56 3sstr3d φxISIxTIx
58 imassrn TIxranT
59 53 frnd φxIranTSubGrpG
60 mresspw SubGrpGMooreBaseGSubGrpG𝒫BaseG
61 42 60 syl φxISubGrpG𝒫BaseG
62 59 61 sstrd φxIranT𝒫BaseG
63 58 62 sstrid φxITIx𝒫BaseG
64 sspwuni TIx𝒫BaseGTIxBaseG
65 63 64 sylib φxITIxBaseG
66 42 7 57 65 mrcssd φxImrClsSubGrpGSIxmrClsSubGrpGTIx
67 ss2in SxTxmrClsSubGrpGSIxmrClsSubGrpGTIxSxmrClsSubGrpGSIxTxmrClsSubGrpGTIx
68 16 66 67 syl2anc φxISxmrClsSubGrpGSIxTxmrClsSubGrpGTIx
69 1 adantr φxIGdomDProdT
70 2 adantr φxIdomT=I
71 simpr φxIxI
72 69 70 71 6 7 dprddisj φxITxmrClsSubGrpGTIx=0G
73 68 72 sseqtrd φxISxmrClsSubGrpGSIx0G
74 5 6 7 9 10 3 38 73 dmdprdd φGdomDProdS
75 1 a1d φGdomDProdSGdomDProdT
76 ss2ixp kISkTkkISkkITk
77 11 76 syl φkISkkITk
78 rabss2 kISkkITkhkISk|finSupp0GhhkITk|finSupp0Gh
79 ssrexv hkISk|finSupp0GhhkITk|finSupp0GhfhkISk|finSupp0Gha=GffhkITk|finSupp0Gha=Gf
80 77 78 79 3syl φfhkISk|finSupp0Gha=GffhkITk|finSupp0Gha=Gf
81 75 80 anim12d φGdomDProdSfhkISk|finSupp0Gha=GfGdomDProdTfhkITk|finSupp0Gha=Gf
82 fdm S:ISubGrpGdomS=I
83 eqid hkISk|finSupp0Gh=hkISk|finSupp0Gh
84 6 83 eldprd domS=IaGDProdSGdomDProdSfhkISk|finSupp0Gha=Gf
85 3 82 84 3syl φaGDProdSGdomDProdSfhkISk|finSupp0Gha=Gf
86 eqid hkITk|finSupp0Gh=hkITk|finSupp0Gh
87 6 86 eldprd domT=IaGDProdTGdomDProdTfhkITk|finSupp0Gha=Gf
88 2 87 syl φaGDProdTGdomDProdTfhkITk|finSupp0Gha=Gf
89 81 85 88 3imtr4d φaGDProdSaGDProdT
90 89 ssrdv φGDProdSGDProdT
91 74 90 jca φGdomDProdSGDProdSGDProdT