Description: One-sided version of dvferm . A point U which is the local maximum of its right neighborhood has derivative at most zero. (Contributed by Mario Carneiro, 24-Feb-2015) (Proof shortened by Mario Carneiro, 28-Dec-2016)
Ref | Expression | ||
---|---|---|---|
Hypotheses | dvferm.a | |
|
dvferm.b | |
||
dvferm.u | |
||
dvferm.s | |
||
dvferm.d | |
||
dvferm1.r | |
||
Assertion | dvferm1 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dvferm.a | |
|
2 | dvferm.b | |
|
3 | dvferm.u | |
|
4 | dvferm.s | |
|
5 | dvferm.d | |
|
6 | dvferm1.r | |
|
7 | fveq2 | |
|
8 | 7 | oveq1d | |
9 | oveq1 | |
|
10 | 8 9 | oveq12d | |
11 | eqid | |
|
12 | ovex | |
|
13 | 10 11 12 | fvmpt | |
14 | 13 | fvoveq1d | |
15 | id | |
|
16 | 14 15 | breqan12rd | |
17 | 16 | imbi2d | |
18 | 17 | ralbidva | |
19 | 18 | rexbidv | |
20 | dvf | |
|
21 | ffun | |
|
22 | funfvbrb | |
|
23 | 20 21 22 | mp2b | |
24 | 5 23 | sylib | |
25 | eqid | |
|
26 | eqid | |
|
27 | ax-resscn | |
|
28 | 27 | a1i | |
29 | fss | |
|
30 | 1 27 29 | sylancl | |
31 | 25 26 11 28 30 2 | eldv | |
32 | 24 31 | mpbid | |
33 | 32 | simprd | |
34 | 33 | adantr | |
35 | 2 27 | sstrdi | |
36 | 4 3 | sseldd | |
37 | 30 35 36 | dvlem | |
38 | 37 | fmpttd | |
39 | 38 | adantr | |
40 | 35 | adantr | |
41 | 40 | ssdifssd | |
42 | 35 36 | sseldd | |
43 | 42 | adantr | |
44 | 39 41 43 | ellimc3 | |
45 | 34 44 | mpbid | |
46 | 45 | simprd | |
47 | dvfre | |
|
48 | 1 2 47 | syl2anc | |
49 | 48 5 | ffvelcdmd | |
50 | 49 | anim1i | |
51 | elrp | |
|
52 | 50 51 | sylibr | |
53 | 19 46 52 | rspcdva | |
54 | 1 | ad3antrrr | |
55 | 2 | ad3antrrr | |
56 | 3 | ad3antrrr | |
57 | 4 | ad3antrrr | |
58 | 5 | ad3antrrr | |
59 | 6 | ad3antrrr | |
60 | simpllr | |
|
61 | simplr | |
|
62 | simpr | |
|
63 | eqid | |
|
64 | 54 55 56 57 58 59 60 61 62 63 | dvferm1lem | |
65 | 64 | imnani | |
66 | 65 | nrexdv | |
67 | 53 66 | pm2.65da | |
68 | 0re | |
|
69 | lenlt | |
|
70 | 49 68 69 | sylancl | |
71 | 67 70 | mpbird | |