Metamath Proof Explorer


Theorem dvferm1

Description: One-sided version of dvferm . A point U which is the local maximum of its right neighborhood has derivative at most zero. (Contributed by Mario Carneiro, 24-Feb-2015) (Proof shortened by Mario Carneiro, 28-Dec-2016)

Ref Expression
Hypotheses dvferm.a φF:X
dvferm.b φX
dvferm.u φUAB
dvferm.s φABX
dvferm.d φUdomF
dvferm1.r φyUBFyFU
Assertion dvferm1 φFU0

Proof

Step Hyp Ref Expression
1 dvferm.a φF:X
2 dvferm.b φX
3 dvferm.u φUAB
4 dvferm.s φABX
5 dvferm.d φUdomF
6 dvferm1.r φyUBFyFU
7 fveq2 x=zFx=Fz
8 7 oveq1d x=zFxFU=FzFU
9 oveq1 x=zxU=zU
10 8 9 oveq12d x=zFxFUxU=FzFUzU
11 eqid xXUFxFUxU=xXUFxFUxU
12 ovex FzFUzUV
13 10 11 12 fvmpt zXUxXUFxFUxUz=FzFUzU
14 13 fvoveq1d zXUxXUFxFUxUzFU=FzFUzUFU
15 id y=FUy=FU
16 14 15 breqan12rd y=FUzXUxXUFxFUxUzFU<yFzFUzUFU<FU
17 16 imbi2d y=FUzXUzUzU<uxXUFxFUxUzFU<yzUzU<uFzFUzUFU<FU
18 17 ralbidva y=FUzXUzUzU<uxXUFxFUxUzFU<yzXUzUzU<uFzFUzUFU<FU
19 18 rexbidv y=FUu+zXUzUzU<uxXUFxFUxUzFU<yu+zXUzUzU<uFzFUzUFU<FU
20 dvf F:domF
21 ffun F:domFFunF
22 funfvbrb FunFUdomFUFFU
23 20 21 22 mp2b UdomFUFFU
24 5 23 sylib φUFFU
25 eqid TopOpenfld𝑡=TopOpenfld𝑡
26 eqid TopOpenfld=TopOpenfld
27 ax-resscn
28 27 a1i φ
29 fss F:XF:X
30 1 27 29 sylancl φF:X
31 25 26 11 28 30 2 eldv φUFFUUintTopOpenfld𝑡XFUxXUFxFUxUlimU
32 24 31 mpbid φUintTopOpenfld𝑡XFUxXUFxFUxUlimU
33 32 simprd φFUxXUFxFUxUlimU
34 33 adantr φ0<FUFUxXUFxFUxUlimU
35 2 27 sstrdi φX
36 4 3 sseldd φUX
37 30 35 36 dvlem φxXUFxFUxU
38 37 fmpttd φxXUFxFUxU:XU
39 38 adantr φ0<FUxXUFxFUxU:XU
40 35 adantr φ0<FUX
41 40 ssdifssd φ0<FUXU
42 35 36 sseldd φU
43 42 adantr φ0<FUU
44 39 41 43 ellimc3 φ0<FUFUxXUFxFUxUlimUFUy+u+zXUzUzU<uxXUFxFUxUzFU<y
45 34 44 mpbid φ0<FUFUy+u+zXUzUzU<uxXUFxFUxUzFU<y
46 45 simprd φ0<FUy+u+zXUzUzU<uxXUFxFUxUzFU<y
47 dvfre F:XXF:domF
48 1 2 47 syl2anc φF:domF
49 48 5 ffvelcdmd φFU
50 49 anim1i φ0<FUFU0<FU
51 elrp FU+FU0<FU
52 50 51 sylibr φ0<FUFU+
53 19 46 52 rspcdva φ0<FUu+zXUzUzU<uFzFUzUFU<FU
54 1 ad3antrrr φ0<FUu+zXUzUzU<uFzFUzUFU<FUF:X
55 2 ad3antrrr φ0<FUu+zXUzUzU<uFzFUzUFU<FUX
56 3 ad3antrrr φ0<FUu+zXUzUzU<uFzFUzUFU<FUUAB
57 4 ad3antrrr φ0<FUu+zXUzUzU<uFzFUzUFU<FUABX
58 5 ad3antrrr φ0<FUu+zXUzUzU<uFzFUzUFU<FUUdomF
59 6 ad3antrrr φ0<FUu+zXUzUzU<uFzFUzUFU<FUyUBFyFU
60 simpllr φ0<FUu+zXUzUzU<uFzFUzUFU<FU0<FU
61 simplr φ0<FUu+zXUzUzU<uFzFUzUFU<FUu+
62 simpr φ0<FUu+zXUzUzU<uFzFUzUFU<FUzXUzUzU<uFzFUzUFU<FU
63 eqid U+ifBU+uBU+u2=U+ifBU+uBU+u2
64 54 55 56 57 58 59 60 61 62 63 dvferm1lem ¬φ0<FUu+zXUzUzU<uFzFUzUFU<FU
65 64 imnani φ0<FUu+¬zXUzUzU<uFzFUzUFU<FU
66 65 nrexdv φ0<FU¬u+zXUzUzU<uFzFUzUFU<FU
67 53 66 pm2.65da φ¬0<FU
68 0re 0
69 lenlt FU0FU0¬0<FU
70 49 68 69 sylancl φFU0¬0<FU
71 67 70 mpbird φFU0