Metamath Proof Explorer


Theorem dya2icoseg2

Description: For any point and any open interval of RR containing that point, there is a closed-below open-above dyadic rational interval which contains that point and is included in the original interval. (Contributed by Thierry Arnoux, 12-Oct-2017)

Ref Expression
Hypotheses sxbrsiga.0 J=topGenran.
dya2ioc.1 I=x,nx2nx+12n
Assertion dya2icoseg2 XEran.XEbranIXbbE

Proof

Step Hyp Ref Expression
1 sxbrsiga.0 J=topGenran.
2 dya2ioc.1 I=x,nx2nx+12n
3 eqid 1log2d=1log2d
4 1 2 3 dya2icoseg Xd+branIXbbXdX+d
5 4 ralrimiva Xd+branIXbbXdX+d
6 5 3ad2ant1 XEran.XEd+branIXbbXdX+d
7 simp3 XEran.XEXE
8 iooex .V
9 8 rnex ran.V
10 bastg ran.Vran.topGenran.
11 9 10 ax-mp ran.topGenran.
12 simp2 XEran.XEEran.
13 11 12 sselid XEran.XEEtopGenran.
14 13 1 eleqtrrdi XEran.XEEJ
15 eqid abs2=abs2
16 15 rexmet abs2∞Met
17 recms fldCMetSp
18 cmsms fldCMetSpfldMetSp
19 msxms fldMetSpfld∞MetSp
20 17 18 19 mp2b fld∞MetSp
21 retopn topGenran.=TopOpenfld
22 1 21 eqtri J=TopOpenfld
23 rebase =Basefld
24 reds abs=distfld
25 24 reseq1i abs2=distfld2
26 22 23 25 xmstopn fld∞MetSpJ=MetOpenabs2
27 20 26 ax-mp J=MetOpenabs2
28 27 elmopn2 abs2∞MetEJExEd+xballabs2dE
29 16 28 ax-mp EJExEd+xballabs2dE
30 29 simprbi EJxEd+xballabs2dE
31 14 30 syl XEran.XExEd+xballabs2dE
32 oveq1 x=Xxballabs2d=Xballabs2d
33 32 sseq1d x=Xxballabs2dEXballabs2dE
34 33 rexbidv x=Xd+xballabs2dEd+Xballabs2dE
35 34 rspcva XExEd+xballabs2dEd+Xballabs2dE
36 7 31 35 syl2anc XEran.XEd+Xballabs2dE
37 rpre d+d
38 15 bl2ioo XdXballabs2d=XdX+d
39 38 sseq1d XdXballabs2dEXdX+dE
40 37 39 sylan2 Xd+Xballabs2dEXdX+dE
41 40 rexbidva Xd+Xballabs2dEd+XdX+dE
42 41 3ad2ant1 XEran.XEd+Xballabs2dEd+XdX+dE
43 36 42 mpbid XEran.XEd+XdX+dE
44 r19.29 d+branIXbbXdX+dd+XdX+dEd+branIXbbXdX+dXdX+dE
45 6 43 44 syl2anc XEran.XEd+branIXbbXdX+dXdX+dE
46 r19.41v branIXbbXdX+dXdX+dEbranIXbbXdX+dXdX+dE
47 sstr bXdX+dXdX+dEbE
48 47 anim2i XbbXdX+dXdX+dEXbbE
49 48 anassrs XbbXdX+dXdX+dEXbbE
50 49 reximi branIXbbXdX+dXdX+dEbranIXbbE
51 46 50 sylbir branIXbbXdX+dXdX+dEbranIXbbE
52 51 rexlimivw d+branIXbbXdX+dXdX+dEbranIXbbE
53 45 52 syl XEran.XEbranIXbbE