Description: For any point and any open interval of RR containing that point, there is a closed-below open-above dyadic rational interval which contains that point and is included in the original interval. (Contributed by Thierry Arnoux, 12-Oct-2017)
Ref | Expression | ||
---|---|---|---|
Hypotheses | sxbrsiga.0 | |
|
dya2ioc.1 | |
||
Assertion | dya2icoseg2 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sxbrsiga.0 | |
|
2 | dya2ioc.1 | |
|
3 | eqid | |
|
4 | 1 2 3 | dya2icoseg | |
5 | 4 | ralrimiva | |
6 | 5 | 3ad2ant1 | |
7 | simp3 | |
|
8 | iooex | |
|
9 | 8 | rnex | |
10 | bastg | |
|
11 | 9 10 | ax-mp | |
12 | simp2 | |
|
13 | 11 12 | sselid | |
14 | 13 1 | eleqtrrdi | |
15 | eqid | |
|
16 | 15 | rexmet | |
17 | recms | |
|
18 | cmsms | |
|
19 | msxms | |
|
20 | 17 18 19 | mp2b | |
21 | retopn | |
|
22 | 1 21 | eqtri | |
23 | rebase | |
|
24 | reds | |
|
25 | 24 | reseq1i | |
26 | 22 23 25 | xmstopn | |
27 | 20 26 | ax-mp | |
28 | 27 | elmopn2 | |
29 | 16 28 | ax-mp | |
30 | 29 | simprbi | |
31 | 14 30 | syl | |
32 | oveq1 | |
|
33 | 32 | sseq1d | |
34 | 33 | rexbidv | |
35 | 34 | rspcva | |
36 | 7 31 35 | syl2anc | |
37 | rpre | |
|
38 | 15 | bl2ioo | |
39 | 38 | sseq1d | |
40 | 37 39 | sylan2 | |
41 | 40 | rexbidva | |
42 | 41 | 3ad2ant1 | |
43 | 36 42 | mpbid | |
44 | r19.29 | |
|
45 | 6 43 44 | syl2anc | |
46 | r19.41v | |
|
47 | sstr | |
|
48 | 47 | anim2i | |
49 | 48 | anassrs | |
50 | 49 | reximi | |
51 | 46 50 | sylbir | |
52 | 51 | rexlimivw | |
53 | 45 52 | syl | |