Metamath Proof Explorer


Theorem efif1olem2

Description: Lemma for efif1o . (Contributed by Mario Carneiro, 13-May-2014)

Ref Expression
Hypothesis efif1olem1.1 D=AA+2π
Assertion efif1olem2 AzyDzy2π

Proof

Step Hyp Ref Expression
1 efif1olem1.1 D=AA+2π
2 simpl AzA
3 2re 2
4 pire π
5 3 4 remulcli 2π
6 readdcl A2πA+2π
7 2 5 6 sylancl AzA+2π
8 resubcl AzAz
9 2pos 0<2
10 pipos 0<π
11 3 4 9 10 mulgt0ii 0<2π
12 5 11 elrpii 2π+
13 modcl Az2π+Azmod2π
14 8 12 13 sylancl AzAzmod2π
15 7 14 resubcld AzA+2π-Azmod2π
16 5 a1i Az2π
17 modlt Az2π+Azmod2π<2π
18 8 12 17 sylancl AzAzmod2π<2π
19 14 16 2 18 ltadd2dd AzA+Azmod2π<A+2π
20 2 14 7 ltaddsubd AzA+Azmod2π<A+2πA<A+2π-Azmod2π
21 19 20 mpbid AzA<A+2π-Azmod2π
22 modge0 Az2π+0Azmod2π
23 8 12 22 sylancl Az0Azmod2π
24 7 14 subge02d Az0Azmod2πA+2π-Azmod2πA+2π
25 23 24 mpbid AzA+2π-Azmod2πA+2π
26 rexr AA*
27 elioc2 A*A+2πA+2π-Azmod2πAA+2πA+2π-Azmod2πA<A+2π-Azmod2πA+2π-Azmod2πA+2π
28 26 7 27 syl2an2r AzA+2π-Azmod2πAA+2πA+2π-Azmod2πA<A+2π-Azmod2πA+2π-Azmod2πA+2π
29 15 21 25 28 mpbir3and AzA+2π-Azmod2πAA+2π
30 29 1 eleqtrrdi AzA+2π-Azmod2πD
31 modval Az2π+Azmod2π=A-z-2πAz2π
32 8 12 31 sylancl AzAzmod2π=A-z-2πAz2π
33 32 oveq2d AzA+2π-Azmod2π=A+2π-A-z-2πAz2π
34 7 recnd AzA+2π
35 8 recnd AzAz
36 5 11 gt0ne0ii 2π0
37 redivcl Az2π2π0Az2π
38 5 36 37 mp3an23 AzAz2π
39 8 38 syl AzAz2π
40 39 flcld AzAz2π
41 40 zred AzAz2π
42 remulcl 2πAz2π2πAz2π
43 5 41 42 sylancr Az2πAz2π
44 43 recnd Az2πAz2π
45 34 35 44 subsubd AzA+2π-A-z-2πAz2π=A+2π-Az+2πAz2π
46 2 recnd AzA
47 5 recni 2π
48 47 a1i Az2π
49 simpr Azz
50 49 recnd Azz
51 46 48 50 pnncand AzA+2π-Az=2π+z
52 51 oveq1d AzA+2π-Az+2πAz2π=2π+z+2πAz2π
53 33 45 52 3eqtrd AzA+2π-Azmod2π=2π+z+2πAz2π
54 53 oveq2d AzzA+2π-Azmod2π=z2π+z+2πAz2π
55 addcl 2πz2π+z
56 47 50 55 sylancr Az2π+z
57 50 56 44 subsub4d Azz-2π+z-2πAz2π=z2π+z+2πAz2π
58 56 50 negsubdi2d Az2π+z-z=z2π+z
59 48 50 pncand Az2π+z-z=2π
60 59 negeqd Az2π+z-z=2π
61 58 60 eqtr3d Azz2π+z=2π
62 neg1cn 1
63 47 mulm1i -12π=2π
64 62 47 63 mulcomli 2π-1=2π
65 61 64 eqtr4di Azz2π+z=2π-1
66 65 oveq1d Azz-2π+z-2πAz2π=2π-12πAz2π
67 62 a1i Az1
68 40 zcnd AzAz2π
69 48 67 68 subdid Az2π-1-Az2π=2π-12πAz2π
70 66 69 eqtr4d Azz-2π+z-2πAz2π=2π-1-Az2π
71 54 57 70 3eqtr2d AzzA+2π-Azmod2π=2π-1-Az2π
72 71 oveq1d AzzA+2π-Azmod2π2π=2π-1-Az2π2π
73 neg1z 1
74 zsubcl 1Az2π-1-Az2π
75 73 40 74 sylancr Az-1-Az2π
76 75 zcnd Az-1-Az2π
77 divcan3 -1-Az2π2π2π02π-1-Az2π2π=-1-Az2π
78 47 36 77 mp3an23 -1-Az2π2π-1-Az2π2π=-1-Az2π
79 76 78 syl Az2π-1-Az2π2π=-1-Az2π
80 72 79 eqtrd AzzA+2π-Azmod2π2π=-1-Az2π
81 80 75 eqeltrd AzzA+2π-Azmod2π2π
82 oveq2 y=A+2π-Azmod2πzy=zA+2π-Azmod2π
83 82 oveq1d y=A+2π-Azmod2πzy2π=zA+2π-Azmod2π2π
84 83 eleq1d y=A+2π-Azmod2πzy2πzA+2π-Azmod2π2π
85 84 rspcev A+2π-Azmod2πDzA+2π-Azmod2π2πyDzy2π
86 30 81 85 syl2anc AzyDzy2π