Metamath Proof Explorer


Theorem ege2le3

Description: Lemma for egt2lt3 . (Contributed by NM, 20-Mar-2005) (Proof shortened by Mario Carneiro, 28-Apr-2014)

Ref Expression
Hypotheses erelem1.1 F=n212n
erelem1.2 G=n01n!
Assertion ege2le3 2ee3

Proof

Step Hyp Ref Expression
1 erelem1.1 F=n212n
2 erelem1.2 G=n01n!
3 nn0uz 0=0
4 0nn0 00
5 4 a1i 00
6 1e0p1 1=0+1
7 0z 0
8 fveq2 n=0n!=0!
9 fac0 0!=1
10 8 9 eqtrdi n=0n!=1
11 10 oveq2d n=01n!=11
12 ax-1cn 1
13 12 div1i 11=1
14 11 13 eqtrdi n=01n!=1
15 1ex 1V
16 14 2 15 fvmpt 00G0=1
17 4 16 mp1i G0=1
18 7 17 seq1i seq0+G0=1
19 1nn0 10
20 fveq2 n=1n!=1!
21 fac1 1!=1
22 20 21 eqtrdi n=1n!=1
23 22 oveq2d n=11n!=11
24 23 13 eqtrdi n=11n!=1
25 24 2 15 fvmpt 10G1=1
26 19 25 mp1i G1=1
27 3 5 6 18 26 seqp1d seq0+G1=1+1
28 df-2 2=1+1
29 27 28 eqtr4di seq0+G1=2
30 19 a1i 10
31 nn0z n0n
32 1exp n1n=1
33 31 32 syl n01n=1
34 33 oveq1d n01nn!=1n!
35 34 mpteq2ia n01nn!=n01n!
36 2 35 eqtr4i G=n01nn!
37 36 efcvg 1seq0+Ge1
38 12 37 mp1i seq0+Ge1
39 df-e e=e1
40 38 39 breqtrrdi seq0+Ge
41 fveq2 n=kn!=k!
42 41 oveq2d n=k1n!=1k!
43 ovex 1k!V
44 42 2 43 fvmpt k0Gk=1k!
45 44 adantl k0Gk=1k!
46 faccl k0k!
47 46 adantl k0k!
48 47 nnrecred k01k!
49 45 48 eqeltrd k0Gk
50 47 nnred k0k!
51 47 nngt0d k00<k!
52 1re 1
53 0le1 01
54 divge0 101k!0<k!01k!
55 52 53 54 mpanl12 k!0<k!01k!
56 50 51 55 syl2anc k001k!
57 56 45 breqtrrd k00Gk
58 3 30 40 49 57 climserle seq0+G1e
59 29 58 eqbrtrrd 2e
60 59 mptru 2e
61 nnuz =1
62 1zzd 1
63 49 recnd k0Gk
64 3 5 63 40 clim2ser seq0+1+Geseq0+G0
65 0p1e1 0+1=1
66 seqeq1 0+1=1seq0+1+G=seq1+G
67 65 66 ax-mp seq0+1+G=seq1+G
68 18 mptru seq0+G0=1
69 68 oveq2i eseq0+G0=e1
70 64 67 69 3brtr3g seq1+Ge1
71 2cnd 2
72 oveq2 n=k12n=12k
73 eqid n012n=n012n
74 ovex 12kV
75 72 73 74 fvmpt k0n012nk=12k
76 75 adantl k0n012nk=12k
77 halfre 12
78 simpr k0k0
79 reexpcl 12k012k
80 77 78 79 sylancr k012k
81 80 recnd k012k
82 76 81 eqeltrd k0n012nk
83 1lt2 1<2
84 2re 2
85 0le2 02
86 absid 2022=2
87 84 85 86 mp2an 2=2
88 83 87 breqtrri 1<2
89 88 a1i 1<2
90 71 89 76 georeclim seq0+n012n221
91 2m1e1 21=1
92 91 oveq2i 221=21
93 2cn 2
94 93 div1i 21=2
95 92 94 eqtri 221=2
96 90 95 breqtrdi seq0+n012n2
97 3 5 82 96 clim2ser seq0+1+n012n2seq0+n012n0
98 seqeq1 0+1=1seq0+1+n012n=seq1+n012n
99 65 98 ax-mp seq0+1+n012n=seq1+n012n
100 oveq2 n=012n=120
101 ovex 120V
102 100 73 101 fvmpt 00n012n0=120
103 4 102 ax-mp n012n0=120
104 halfcn 12
105 exp0 12120=1
106 104 105 ax-mp 120=1
107 103 106 eqtri n012n0=1
108 107 a1i n012n0=1
109 7 108 seq1i seq0+n012n0=1
110 109 mptru seq0+n012n0=1
111 110 oveq2i 2seq0+n012n0=21
112 111 91 eqtri 2seq0+n012n0=1
113 97 99 112 3brtr3g seq1+n012n1
114 nnnn0 kk0
115 114 82 sylan2 kn012nk
116 72 oveq2d n=k212n=212k
117 ovex 212kV
118 116 1 117 fvmpt kFk=212k
119 118 adantl kFk=212k
120 114 76 sylan2 kn012nk=12k
121 120 oveq2d k2n012nk=212k
122 119 121 eqtr4d kFk=2n012nk
123 61 62 71 113 115 122 isermulc2 seq1+F21
124 2t1e2 21=2
125 123 124 breqtrdi seq1+F2
126 114 49 sylan2 kGk
127 remulcl 212k212k
128 84 80 127 sylancr k0212k
129 114 128 sylan2 k212k
130 119 129 eqeltrd kFk
131 faclbnd2 k02k2k!
132 131 adantl k02k2k!
133 2nn 2
134 nnexpcl 2k02k
135 133 78 134 sylancr k02k
136 135 nnrpd k02k+
137 136 rphalfcld k02k2+
138 47 nnrpd k0k!+
139 137 138 lerecd k02k2k!1k!12k2
140 132 139 mpbid k01k!12k2
141 2cnd k02
142 135 nncnd k02k
143 135 nnne0d k02k0
144 141 142 143 divrecd k022k=212k
145 2ne0 20
146 recdiv 2k2k022012k2=22k
147 93 145 146 mpanr12 2k2k012k2=22k
148 142 143 147 syl2anc k012k2=22k
149 145 a1i k020
150 nn0z k0k
151 150 adantl k0k
152 141 149 151 exprecd k012k=12k
153 152 oveq2d k0212k=212k
154 144 148 153 3eqtr4rd k0212k=12k2
155 140 154 breqtrrd k01k!212k
156 114 155 sylan2 k1k!212k
157 114 45 sylan2 kGk=1k!
158 156 157 119 3brtr4d kGkFk
159 61 62 70 125 126 130 158 iserle e12
160 159 mptru e12
161 ere e
162 161 52 84 lesubaddi e12e2+1
163 160 162 mpbi e2+1
164 df-3 3=2+1
165 163 164 breqtrri e3
166 60 165 pm3.2i 2ee3