Metamath Proof Explorer


Theorem elfuns

Description: Membership in the class of all functions. (Contributed by Scott Fenton, 18-Feb-2013)

Ref Expression
Hypothesis elfuns.1 FV
Assertion elfuns F𝖥𝗎𝗇𝗌FunF

Proof

Step Hyp Ref Expression
1 elfuns.1 FV
2 elrel RelFpFxyp=xy
3 2 ex RelFpFxyp=xy
4 elrel RelFqFazq=az
5 4 ex RelFqFazq=az
6 3 5 anim12d RelFpFqFxyp=xyazq=az
7 6 adantrd RelFpFqFq1stVI2ndpxyp=xyazq=az
8 7 pm4.71rd RelFpFqFq1stVI2ndpxyp=xyazq=azpFqFq1stVI2ndp
9 19.41vvvv xyazp=xyq=azpFqFq1stVI2ndpxyazp=xyq=azpFqFq1stVI2ndp
10 ee4anv xyazp=xyq=azxyp=xyazq=az
11 10 anbi1i xyazp=xyq=azpFqFq1stVI2ndpxyp=xyazq=azpFqFq1stVI2ndp
12 9 11 bitr2i xyp=xyazq=azpFqFq1stVI2ndpxyazp=xyq=azpFqFq1stVI2ndp
13 8 12 bitrdi RelFpFqFq1stVI2ndpxyazp=xyq=azpFqFq1stVI2ndp
14 13 2exbidv RelFpqpFqFq1stVI2ndppqxyazp=xyq=azpFqFq1stVI2ndp
15 excom13 pqxyazp=xyq=azpFqFq1stVI2ndpxqpyazp=xyq=azpFqFq1stVI2ndp
16 excom13 qpyazp=xyq=azpFqFq1stVI2ndpypqazp=xyq=azpFqFq1stVI2ndp
17 exrot4 pqazp=xyq=azpFqFq1stVI2ndpazpqp=xyq=azpFqFq1stVI2ndp
18 excom azpqp=xyq=azpFqFq1stVI2ndpzapqp=xyq=azpFqFq1stVI2ndp
19 df-3an p=xyq=azpFqFq1stVI2ndpp=xyq=azpFqFq1stVI2ndp
20 19 2exbii pqp=xyq=azpFqFq1stVI2ndppqp=xyq=azpFqFq1stVI2ndp
21 opex xyV
22 opex azV
23 eleq1 p=xypFxyF
24 23 anbi1d p=xypFqFxyFqF
25 breq2 p=xyq1stVI2ndpq1stVI2ndxy
26 24 25 anbi12d p=xypFqFq1stVI2ndpxyFqFq1stVI2ndxy
27 eleq1 q=azqFazF
28 27 anbi2d q=azxyFqFxyFazF
29 breq1 q=azq1stVI2ndxyaz1stVI2ndxy
30 vex xV
31 vex yV
32 22 30 31 brtxp az1stVI2ndxyaz1stxazVI2ndy
33 vex aV
34 vex zV
35 33 34 br1steq az1stxx=a
36 equcom x=aa=x
37 35 36 bitri az1stxa=x
38 22 31 brco azVI2ndyxaz2ndxxVIy
39 33 34 br2ndeq az2ndxx=z
40 39 anbi1i az2ndxxVIyx=zxVIy
41 40 exbii xaz2ndxxVIyxx=zxVIy
42 breq1 x=zxVIyzVIy
43 brv zVy
44 brdif zVIyzVy¬zIy
45 43 44 mpbiran zVIy¬zIy
46 31 ideq zIyz=y
47 equcom z=yy=z
48 46 47 bitri zIyy=z
49 48 notbii ¬zIy¬y=z
50 45 49 bitri zVIy¬y=z
51 42 50 bitrdi x=zxVIy¬y=z
52 51 equsexvw xx=zxVIy¬y=z
53 38 41 52 3bitri azVI2ndy¬y=z
54 37 53 anbi12i az1stxazVI2ndya=x¬y=z
55 32 54 bitri az1stVI2ndxya=x¬y=z
56 29 55 bitrdi q=azq1stVI2ndxya=x¬y=z
57 28 56 anbi12d q=azxyFqFq1stVI2ndxyxyFazFa=x¬y=z
58 an12 xyFazFa=x¬y=za=xxyFazF¬y=z
59 57 58 bitrdi q=azxyFqFq1stVI2ndxya=xxyFazF¬y=z
60 21 22 26 59 ceqsex2v pqp=xyq=azpFqFq1stVI2ndpa=xxyFazF¬y=z
61 20 60 bitr3i pqp=xyq=azpFqFq1stVI2ndpa=xxyFazF¬y=z
62 61 exbii apqp=xyq=azpFqFq1stVI2ndpaa=xxyFazF¬y=z
63 opeq1 a=xaz=xz
64 63 eleq1d a=xazFxzF
65 64 anbi2d a=xxyFazFxyFxzF
66 65 anbi1d a=xxyFazF¬y=zxyFxzF¬y=z
67 66 equsexvw aa=xxyFazF¬y=zxyFxzF¬y=z
68 62 67 bitri apqp=xyq=azpFqFq1stVI2ndpxyFxzF¬y=z
69 68 exbii zapqp=xyq=azpFqFq1stVI2ndpzxyFxzF¬y=z
70 exanali zxyFxzF¬y=z¬zxyFxzFy=z
71 69 70 bitri zapqp=xyq=azpFqFq1stVI2ndp¬zxyFxzFy=z
72 17 18 71 3bitri pqazp=xyq=azpFqFq1stVI2ndp¬zxyFxzFy=z
73 72 exbii ypqazp=xyq=azpFqFq1stVI2ndpy¬zxyFxzFy=z
74 exnal y¬zxyFxzFy=z¬yzxyFxzFy=z
75 16 73 74 3bitri qpyazp=xyq=azpFqFq1stVI2ndp¬yzxyFxzFy=z
76 75 exbii xqpyazp=xyq=azpFqFq1stVI2ndpx¬yzxyFxzFy=z
77 exnal x¬yzxyFxzFy=z¬xyzxyFxzFy=z
78 15 76 77 3bitri pqxyazp=xyq=azpFqFq1stVI2ndp¬xyzxyFxzFy=z
79 14 78 bitrdi RelFpqpFqFq1stVI2ndp¬xyzxyFxzFy=z
80 79 con2bid RelFxyzxyFxzFy=z¬pqpFqFq1stVI2ndp
81 80 pm5.32i RelFxyzxyFxzFy=zRelF¬pqpFqFq1stVI2ndp
82 dffun4 FunFRelFxyzxyFxzFy=z
83 df-funs 𝖥𝗎𝗇𝗌=𝒫V×V𝖥𝗂𝗑E1stVI2ndE-1
84 83 eleq2i F𝖥𝗎𝗇𝗌F𝒫V×V𝖥𝗂𝗑E1stVI2ndE-1
85 eldif F𝒫V×V𝖥𝗂𝗑E1stVI2ndE-1F𝒫V×V¬F𝖥𝗂𝗑E1stVI2ndE-1
86 1 elpw F𝒫V×VFV×V
87 df-rel RelFFV×V
88 86 87 bitr4i F𝒫V×VRelF
89 1 elfix F𝖥𝗂𝗑E1stVI2ndE-1FE1stVI2ndE-1F
90 1 1 coep FE1stVI2ndE-1FpFF1stVI2ndE-1p
91 vex pV
92 1 91 coepr F1stVI2ndE-1pqFq1stVI2ndp
93 92 rexbii pFF1stVI2ndE-1ppFqFq1stVI2ndp
94 90 93 bitri FE1stVI2ndE-1FpFqFq1stVI2ndp
95 r2ex pFqFq1stVI2ndppqpFqFq1stVI2ndp
96 89 94 95 3bitri F𝖥𝗂𝗑E1stVI2ndE-1pqpFqFq1stVI2ndp
97 96 notbii ¬F𝖥𝗂𝗑E1stVI2ndE-1¬pqpFqFq1stVI2ndp
98 88 97 anbi12i F𝒫V×V¬F𝖥𝗂𝗑E1stVI2ndE-1RelF¬pqpFqFq1stVI2ndp
99 84 85 98 3bitri F𝖥𝗎𝗇𝗌RelF¬pqpFqFq1stVI2ndp
100 81 82 99 3bitr4ri F𝖥𝗎𝗇𝗌FunF