Metamath Proof Explorer


Theorem esplyfval2

Description: When K is out-of-bounds, the K -th elementary symmetric polynomial is zero. (Contributed by Thierry Arnoux, 25-Jan-2026)

Ref Expression
Hypotheses esplyfval2.d D = h 0 I | finSupp 0 h
esplyfval2.i φ I Fin
esplyfval2.r φ R Ring
esplyfval2.k φ K 0 0 I
esplyfval2.z Z = 0 I mPoly R
Assertion esplyfval2 Could not format assertion : No typesetting found for |- ( ph -> ( ( I eSymPoly R ) ` K ) = Z ) with typecode |-

Proof

Step Hyp Ref Expression
1 esplyfval2.d D = h 0 I | finSupp 0 h
2 esplyfval2.i φ I Fin
3 esplyfval2.r φ R Ring
4 esplyfval2.k φ K 0 0 I
5 esplyfval2.z Z = 0 I mPoly R
6 2 adantr φ c 𝒫 I I Fin
7 elpwi c 𝒫 I c I
8 7 adantl φ c 𝒫 I c I
9 6 8 ssfid φ c 𝒫 I c Fin
10 hashcl c Fin c 0
11 9 10 syl φ c 𝒫 I c 0
12 11 nn0red φ c 𝒫 I c
13 hashcl I Fin I 0
14 2 13 syl φ I 0
15 14 nn0red φ I
16 15 adantr φ c 𝒫 I I
17 4 eldifad φ K 0
18 17 nn0red φ K
19 18 adantr φ c 𝒫 I K
20 hashss I Fin c I c I
21 6 8 20 syl2anc φ c 𝒫 I c I
22 14 nn0zd φ I
23 nn0diffz0 I 0 0 0 I = I + 1
24 14 23 syl φ 0 0 I = I + 1
25 4 24 eleqtrd φ K I + 1
26 eluzp1l I K I + 1 I < K
27 22 25 26 syl2anc φ I < K
28 27 adantr φ c 𝒫 I I < K
29 12 16 19 21 28 lelttrd φ c 𝒫 I c < K
30 12 29 ltned φ c 𝒫 I c K
31 30 neneqd φ c 𝒫 I ¬ c = K
32 31 ralrimiva φ c 𝒫 I ¬ c = K
33 rabeq0 c 𝒫 I | c = K = c 𝒫 I ¬ c = K
34 32 33 sylibr φ c 𝒫 I | c = K =
35 34 imaeq2d φ 𝟙 I c 𝒫 I | c = K = 𝟙 I
36 ima0 𝟙 I =
37 35 36 eqtrdi φ 𝟙 I c 𝒫 I | c = K =
38 37 fveq2d φ 𝟙 D 𝟙 I c 𝒫 I | c = K = 𝟙 D
39 ovex 0 I V
40 1 39 rabex2 D V
41 indconst0 D V 𝟙 D = D × 0
42 40 41 mp1i φ 𝟙 D = D × 0
43 38 42 eqtrd φ 𝟙 D 𝟙 I c 𝒫 I | c = K = D × 0
44 43 coeq2d φ ℤRHom R 𝟙 D 𝟙 I c 𝒫 I | c = K = ℤRHom R D × 0
45 eqid ℤRHom R = ℤRHom R
46 45 zrhrhm R Ring ℤRHom R ring RingHom R
47 zringbas = Base ring
48 eqid Base R = Base R
49 47 48 rhmf ℤRHom R ring RingHom R ℤRHom R : Base R
50 3 46 49 3syl φ ℤRHom R : Base R
51 50 ffnd φ ℤRHom R Fn
52 0zd φ 0
53 fcoconst ℤRHom R Fn 0 ℤRHom R D × 0 = D × ℤRHom R 0
54 51 52 53 syl2anc φ ℤRHom R D × 0 = D × ℤRHom R 0
55 eqid 0 R = 0 R
56 45 55 zrh0 R Ring ℤRHom R 0 = 0 R
57 3 56 syl φ ℤRHom R 0 = 0 R
58 57 sneqd φ ℤRHom R 0 = 0 R
59 58 xpeq2d φ D × ℤRHom R 0 = D × 0 R
60 44 54 59 3eqtrd φ ℤRHom R 𝟙 D 𝟙 I c 𝒫 I | c = K = D × 0 R
61 1 2 3 17 esplyfval Could not format ( ph -> ( ( I eSymPoly R ) ` K ) = ( ( ZRHom ` R ) o. ( ( _Ind ` D ) ` ( ( _Ind ` I ) " { c e. ~P I | ( # ` c ) = K } ) ) ) ) : No typesetting found for |- ( ph -> ( ( I eSymPoly R ) ` K ) = ( ( ZRHom ` R ) o. ( ( _Ind ` D ) ` ( ( _Ind ` I ) " { c e. ~P I | ( # ` c ) = K } ) ) ) ) with typecode |-
62 eqid I mPoly R = I mPoly R
63 1 psrbasfsupp D = h 0 I | h -1 Fin
64 3 ringgrpd φ R Grp
65 62 63 55 5 2 64 mpl0 φ Z = D × 0 R
66 60 61 65 3eqtr4d Could not format ( ph -> ( ( I eSymPoly R ) ` K ) = Z ) : No typesetting found for |- ( ph -> ( ( I eSymPoly R ) ` K ) = Z ) with typecode |-