Metamath Proof Explorer


Theorem etransclem26

Description: Every term in the sum of the N -th derivative of F applied to J is an integer. (Contributed by Glauco Siliprandi, 5-Apr-2020)

Ref Expression
Hypotheses etransclem26.p φP
etransclem26.m φM0
etransclem26.n φN0
etransclem26.jz φJ
etransclem26.c C=n0c0n0M|j=0Mcj=n
etransclem26.d φDCN
Assertion etransclem26 φN!j=0MDj!ifP1<D00P1!P-1-D0!JP-1-D0j=1MifP<Dj0P!PDj!JjPDj

Proof

Step Hyp Ref Expression
1 etransclem26.p φP
2 etransclem26.m φM0
3 etransclem26.n φN0
4 etransclem26.jz φJ
5 etransclem26.c C=n0c0n0M|j=0Mcj=n
6 etransclem26.d φDCN
7 5 3 etransclem12 φCN=c0N0M|j=0Mcj=N
8 6 7 eleqtrd φDc0N0M|j=0Mcj=N
9 fveq1 c=Dcj=Dj
10 9 sumeq2sdv c=Dj=0Mcj=j=0MDj
11 10 eqeq1d c=Dj=0Mcj=Nj=0MDj=N
12 11 elrab Dc0N0M|j=0Mcj=ND0N0Mj=0MDj=N
13 8 12 sylib φD0N0Mj=0MDj=N
14 13 simprd φj=0MDj=N
15 14 eqcomd φN=j=0MDj
16 15 fveq2d φN!=j=0MDj!
17 16 oveq1d φN!j=0MDj!=j=0MDj!j=0MDj!
18 nfcv _jD
19 fzfid φ0MFin
20 nn0ex 0V
21 fzssnn0 0N0
22 mapss 0V0N00N0M00M
23 20 21 22 mp2an 0N0M00M
24 13 simpld φD0N0M
25 23 24 sselid φD00M
26 18 19 25 mccl φj=0MDj!j=0MDj!
27 17 26 eqeltrd φN!j=0MDj!
28 27 nnzd φN!j=0MDj!
29 elmapi D0N0MD:0M0N
30 24 29 syl φD:0M0N
31 1 2 30 4 etransclem10 φifP1<D00P1!P-1-D0!JP-1-D0
32 fzfid φ1MFin
33 1 adantr φj1MP
34 30 adantr φj1MD:0M0N
35 0z 0
36 fzp1ss 00+1M0M
37 35 36 ax-mp 0+1M0M
38 1e0p1 1=0+1
39 38 oveq1i 1M=0+1M
40 39 eleq2i j1Mj0+1M
41 40 biimpi j1Mj0+1M
42 37 41 sselid j1Mj0M
43 42 adantl φj1Mj0M
44 4 adantr φj1MJ
45 33 34 43 44 etransclem3 φj1MifP<Dj0P!PDj!JjPDj
46 32 45 fprodzcl φj=1MifP<Dj0P!PDj!JjPDj
47 31 46 zmulcld φifP1<D00P1!P-1-D0!JP-1-D0j=1MifP<Dj0P!PDj!JjPDj
48 28 47 zmulcld φN!j=0MDj!ifP1<D00P1!P-1-D0!JP-1-D0j=1MifP<Dj0P!PDj!JjPDj