Metamath Proof Explorer


Theorem etransclem34

Description: The N -th derivative of F is continuous. (Contributed by Glauco Siliprandi, 5-Apr-2020)

Ref Expression
Hypotheses etransclem34.s φS
etransclem34.a φXTopOpenfld𝑡S
etransclem34.p φP
etransclem34.m φM0
etransclem34.f F=xXxP1k=1MxkP
etransclem34.n φN0
etransclem34.h H=k0MxXxkifk=0P1P
etransclem34.c C=n0c0n0M|k=0Mck=n
Assertion etransclem34 φSDnFN:Xcn

Proof

Step Hyp Ref Expression
1 etransclem34.s φS
2 etransclem34.a φXTopOpenfld𝑡S
3 etransclem34.p φP
4 etransclem34.m φM0
5 etransclem34.f F=xXxP1k=1MxkP
6 etransclem34.n φN0
7 etransclem34.h H=k0MxXxkifk=0P1P
8 etransclem34.c C=n0c0n0M|k=0Mck=n
9 1 2 3 4 5 6 7 8 etransclem30 φSDnFN=xXcCNN!k=0Mck!k=0MSDnHkckx
10 1 2 dvdmsscn φX
11 8 6 etransclem16 φCNFin
12 10 adantr φcCNX
13 6 faccld φN!
14 13 nncnd φN!
15 14 adantr φcCNN!
16 fzfid φcCN0MFin
17 fzssnn0 0N0
18 ssrab2 c0N0M|k=0Mck=N0N0M
19 simpr φcCNcCN
20 8 6 etransclem12 φCN=c0N0M|k=0Mck=N
21 20 adantr φcCNCN=c0N0M|k=0Mck=N
22 19 21 eleqtrd φcCNcc0N0M|k=0Mck=N
23 18 22 sselid φcCNc0N0M
24 elmapi c0N0Mc:0M0N
25 23 24 syl φcCNc:0M0N
26 25 ffvelcdmda φcCNk0Mck0N
27 17 26 sselid φcCNk0Mck0
28 27 faccld φcCNk0Mck!
29 28 nncnd φcCNk0Mck!
30 16 29 fprodcl φcCNk=0Mck!
31 28 nnne0d φcCNk0Mck!0
32 16 29 31 fprodn0 φcCNk=0Mck!0
33 15 30 32 divcld φcCNN!k=0Mck!
34 ssid
35 34 a1i φcCN
36 12 33 35 constcncfg φcCNxXN!k=0Mck!:Xcn
37 1 ad2antrr φcCNk0MS
38 2 ad2antrr φcCNk0MXTopOpenfld𝑡S
39 3 ad2antrr φcCNk0MP
40 etransclem5 k0MxXxkifk=0P1P=j0MyXyjifj=0P1P
41 7 40 eqtri H=j0MyXyjifj=0P1P
42 simpr φcCNk0Mk0M
43 37 38 39 41 42 27 etransclem20 φcCNk0MSDnHkck:X
44 43 3adant2 φcCNxXk0MSDnHkck:X
45 simp2 φcCNxXk0MxX
46 44 45 ffvelcdmd φcCNxXk0MSDnHkckx
47 43 feqmptd φcCNk0MSDnHkck=xXSDnHkckx
48 37 38 39 41 42 27 etransclem22 φcCNk0MSDnHkck:Xcn
49 47 48 eqeltrrd φcCNk0MxXSDnHkckx:Xcn
50 12 16 46 49 fprodcncf φcCNxXk=0MSDnHkckx:Xcn
51 36 50 mulcncf φcCNxXN!k=0Mck!k=0MSDnHkckx:Xcn
52 10 11 51 fsumcncf φxXcCNN!k=0Mck!k=0MSDnHkckx:Xcn
53 9 52 eqeltrd φSDnFN:Xcn