Description: The N -th derivative of F is continuous. (Contributed by Glauco Siliprandi, 5-Apr-2020)
Ref | Expression | ||
---|---|---|---|
Hypotheses | etransclem34.s | |
|
etransclem34.a | |
||
etransclem34.p | |
||
etransclem34.m | |
||
etransclem34.f | |
||
etransclem34.n | |
||
etransclem34.h | |
||
etransclem34.c | |
||
Assertion | etransclem34 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | etransclem34.s | |
|
2 | etransclem34.a | |
|
3 | etransclem34.p | |
|
4 | etransclem34.m | |
|
5 | etransclem34.f | |
|
6 | etransclem34.n | |
|
7 | etransclem34.h | |
|
8 | etransclem34.c | |
|
9 | 1 2 3 4 5 6 7 8 | etransclem30 | |
10 | 1 2 | dvdmsscn | |
11 | 8 6 | etransclem16 | |
12 | 10 | adantr | |
13 | 6 | faccld | |
14 | 13 | nncnd | |
15 | 14 | adantr | |
16 | fzfid | |
|
17 | fzssnn0 | |
|
18 | ssrab2 | |
|
19 | simpr | |
|
20 | 8 6 | etransclem12 | |
21 | 20 | adantr | |
22 | 19 21 | eleqtrd | |
23 | 18 22 | sselid | |
24 | elmapi | |
|
25 | 23 24 | syl | |
26 | 25 | ffvelcdmda | |
27 | 17 26 | sselid | |
28 | 27 | faccld | |
29 | 28 | nncnd | |
30 | 16 29 | fprodcl | |
31 | 28 | nnne0d | |
32 | 16 29 31 | fprodn0 | |
33 | 15 30 32 | divcld | |
34 | ssid | |
|
35 | 34 | a1i | |
36 | 12 33 35 | constcncfg | |
37 | 1 | ad2antrr | |
38 | 2 | ad2antrr | |
39 | 3 | ad2antrr | |
40 | etransclem5 | |
|
41 | 7 40 | eqtri | |
42 | simpr | |
|
43 | 37 38 39 41 42 27 | etransclem20 | |
44 | 43 | 3adant2 | |
45 | simp2 | |
|
46 | 44 45 | ffvelcdmd | |
47 | 43 | feqmptd | |
48 | 37 38 39 41 42 27 | etransclem22 | |
49 | 47 48 | eqeltrrd | |
50 | 12 16 46 49 | fprodcncf | |
51 | 36 50 | mulcncf | |
52 | 10 11 51 | fsumcncf | |
53 | 9 52 | eqeltrd | |