Metamath Proof Explorer


Theorem evl1sca

Description: Polynomial evaluation maps scalars to constant functions. (Contributed by Mario Carneiro, 12-Jun-2015)

Ref Expression
Hypotheses evl1sca.o O=eval1R
evl1sca.p P=Poly1R
evl1sca.b B=BaseR
evl1sca.a A=algScP
Assertion evl1sca RCRingXBOAX=B×X

Proof

Step Hyp Ref Expression
1 evl1sca.o O=eval1R
2 evl1sca.p P=Poly1R
3 evl1sca.b B=BaseR
4 evl1sca.a A=algScP
5 crngring RCRingRRing
6 5 adantr RCRingXBRRing
7 eqid BaseP=BaseP
8 2 4 3 7 ply1sclf RRingA:BBaseP
9 6 8 syl RCRingXBA:BBaseP
10 ffvelcdm A:BBasePXBAXBaseP
11 9 10 sylancom RCRingXBAXBaseP
12 eqid 1𝑜evalR=1𝑜evalR
13 eqid 1𝑜mPolyR=1𝑜mPolyR
14 eqid PwSer1R=PwSer1R
15 2 14 7 ply1bas BaseP=Base1𝑜mPolyR
16 1 12 3 13 15 evl1val RCRingAXBasePOAX=1𝑜evalRAXyB1𝑜×y
17 11 16 syldan RCRingXBOAX=1𝑜evalRAXyB1𝑜×y
18 2 4 ply1ascl A=algSc1𝑜mPolyR
19 3 ressid RCRingR𝑠B=R
20 19 adantr RCRingXBR𝑠B=R
21 20 oveq2d RCRingXB1𝑜mPolyR𝑠B=1𝑜mPolyR
22 21 fveq2d RCRingXBalgSc1𝑜mPolyR𝑠B=algSc1𝑜mPolyR
23 18 22 eqtr4id RCRingXBA=algSc1𝑜mPolyR𝑠B
24 23 fveq1d RCRingXBAX=algSc1𝑜mPolyR𝑠BX
25 24 fveq2d RCRingXB1𝑜evalRAX=1𝑜evalRalgSc1𝑜mPolyR𝑠BX
26 12 3 evlval 1𝑜evalR=1𝑜evalSubRB
27 eqid 1𝑜mPolyR𝑠B=1𝑜mPolyR𝑠B
28 eqid R𝑠B=R𝑠B
29 eqid algSc1𝑜mPolyR𝑠B=algSc1𝑜mPolyR𝑠B
30 1on 1𝑜On
31 30 a1i RCRingXB1𝑜On
32 simpl RCRingXBRCRing
33 3 subrgid RRingBSubRingR
34 6 33 syl RCRingXBBSubRingR
35 simpr RCRingXBXB
36 26 27 28 3 29 31 32 34 35 evlssca RCRingXB1𝑜evalRalgSc1𝑜mPolyR𝑠BX=B1𝑜×X
37 25 36 eqtrd RCRingXB1𝑜evalRAX=B1𝑜×X
38 37 coeq1d RCRingXB1𝑜evalRAXyB1𝑜×y=B1𝑜×XyB1𝑜×y
39 df1o2 1𝑜=
40 3 fvexi BV
41 0ex V
42 eqid yB1𝑜×y=yB1𝑜×y
43 39 40 41 42 mapsnf1o3 yB1𝑜×y:B1-1 ontoB1𝑜
44 f1of yB1𝑜×y:B1-1 ontoB1𝑜yB1𝑜×y:BB1𝑜
45 43 44 mp1i RCRingXByB1𝑜×y:BB1𝑜
46 42 fmpt yB1𝑜×yB1𝑜yB1𝑜×y:BB1𝑜
47 45 46 sylibr RCRingXByB1𝑜×yB1𝑜
48 eqidd RCRingXByB1𝑜×y=yB1𝑜×y
49 fconstmpt B1𝑜×X=xB1𝑜X
50 49 a1i RCRingXBB1𝑜×X=xB1𝑜X
51 eqidd x=1𝑜×yX=X
52 47 48 50 51 fmptcof RCRingXBB1𝑜×XyB1𝑜×y=yBX
53 fconstmpt B×X=yBX
54 52 53 eqtr4di RCRingXBB1𝑜×XyB1𝑜×y=B×X
55 17 38 54 3eqtrd RCRingXBOAX=B×X