Metamath Proof Explorer


Theorem evlfcllem

Description: Lemma for evlfcl . (Contributed by Mario Carneiro, 12-Jan-2017)

Ref Expression
Hypotheses evlfcl.e E=CevalFD
evlfcl.q Q=CFuncCatD
evlfcl.c φCCat
evlfcl.d φDCat
evlfcl.n N=CNatD
evlfcl.f φFCFuncDXBaseC
evlfcl.g φGCFuncDYBaseC
evlfcl.h φHCFuncDZBaseC
evlfcl.a φAFNGKXHomCY
evlfcl.b φBGNHLYHomCZ
Assertion evlfcllem φFX2ndEHZBLFXGYcompQ×cCHZAK=GY2ndEHZBL1stEFX1stEGYcompD1stEHZFX2ndEGYAK

Proof

Step Hyp Ref Expression
1 evlfcl.e E=CevalFD
2 evlfcl.q Q=CFuncCatD
3 evlfcl.c φCCat
4 evlfcl.d φDCat
5 evlfcl.n N=CNatD
6 evlfcl.f φFCFuncDXBaseC
7 evlfcl.g φGCFuncDYBaseC
8 evlfcl.h φHCFuncDZBaseC
9 evlfcl.a φAFNGKXHomCY
10 evlfcl.b φBGNHLYHomCZ
11 eqid BaseC=BaseC
12 eqid HomC=HomC
13 eqid compD=compD
14 6 simpld φFCFuncD
15 8 simpld φHCFuncD
16 6 simprd φXBaseC
17 8 simprd φZBaseC
18 eqid FX2ndEHZ=FX2ndEHZ
19 eqid compQ=compQ
20 9 simpld φAFNG
21 10 simpld φBGNH
22 2 5 19 20 21 fuccocl φBFGcompQHAFNH
23 eqid compC=compC
24 7 simprd φYBaseC
25 9 simprd φKXHomCY
26 10 simprd φLYHomCZ
27 11 12 23 3 16 24 17 25 26 catcocl φLXYcompCZKXHomCZ
28 1 3 4 11 12 13 5 14 15 16 17 18 22 27 evlf2val φBFGcompQHAFX2ndEHZLXYcompCZK=BFGcompQHAZ1stFX1stFZcompD1stHZX2ndFZLXYcompCZK
29 2 5 11 13 19 20 21 17 fuccoval φBFGcompQHAZ=BZ1stFZ1stGZcompD1stHZAZ
30 29 oveq1d φBFGcompQHAZ1stFX1stFZcompD1stHZX2ndFZLXYcompCZK=BZ1stFZ1stGZcompD1stHZAZ1stFX1stFZcompD1stHZX2ndFZLXYcompCZK
31 relfunc RelCFuncD
32 1st2ndbr RelCFuncDFCFuncD1stFCFuncD2ndF
33 31 14 32 sylancr φ1stFCFuncD2ndF
34 11 12 23 13 33 16 24 17 25 26 funcco φX2ndFZLXYcompCZK=Y2ndFZL1stFX1stFYcompD1stFZX2ndFYK
35 34 oveq2d φBZ1stFZ1stGZcompD1stHZAZ1stFX1stFZcompD1stHZX2ndFZLXYcompCZK=BZ1stFZ1stGZcompD1stHZAZ1stFX1stFZcompD1stHZY2ndFZL1stFX1stFYcompD1stFZX2ndFYK
36 5 20 nat1st2nd φA1stF2ndFN1stG2ndG
37 5 36 11 12 13 24 17 26 nati φAZ1stFY1stFZcompD1stGZY2ndFZL=Y2ndGZL1stFY1stGYcompD1stGZAY
38 37 oveq2d φBZ1stFY1stGZcompD1stHZAZ1stFY1stFZcompD1stGZY2ndFZL=BZ1stFY1stGZcompD1stHZY2ndGZL1stFY1stGYcompD1stGZAY
39 eqid BaseD=BaseD
40 eqid HomD=HomD
41 11 39 33 funcf1 φ1stF:BaseCBaseD
42 41 24 ffvelcdmd φ1stFYBaseD
43 41 17 ffvelcdmd φ1stFZBaseD
44 7 simpld φGCFuncD
45 1st2ndbr RelCFuncDGCFuncD1stGCFuncD2ndG
46 31 44 45 sylancr φ1stGCFuncD2ndG
47 11 39 46 funcf1 φ1stG:BaseCBaseD
48 47 17 ffvelcdmd φ1stGZBaseD
49 11 12 40 33 24 17 funcf2 φY2ndFZ:YHomCZ1stFYHomD1stFZ
50 49 26 ffvelcdmd φY2ndFZL1stFYHomD1stFZ
51 5 36 11 40 17 natcl φAZ1stFZHomD1stGZ
52 1st2ndbr RelCFuncDHCFuncD1stHCFuncD2ndH
53 31 15 52 sylancr φ1stHCFuncD2ndH
54 11 39 53 funcf1 φ1stH:BaseCBaseD
55 54 17 ffvelcdmd φ1stHZBaseD
56 5 21 nat1st2nd φB1stG2ndGN1stH2ndH
57 5 56 11 40 17 natcl φBZ1stGZHomD1stHZ
58 39 40 13 4 42 43 48 50 51 55 57 catass φBZ1stFZ1stGZcompD1stHZAZ1stFY1stFZcompD1stHZY2ndFZL=BZ1stFY1stGZcompD1stHZAZ1stFY1stFZcompD1stGZY2ndFZL
59 47 24 ffvelcdmd φ1stGYBaseD
60 5 36 11 40 24 natcl φAY1stFYHomD1stGY
61 11 12 40 46 24 17 funcf2 φY2ndGZ:YHomCZ1stGYHomD1stGZ
62 61 26 ffvelcdmd φY2ndGZL1stGYHomD1stGZ
63 39 40 13 4 42 59 48 60 62 55 57 catass φBZ1stGY1stGZcompD1stHZY2ndGZL1stFY1stGYcompD1stHZAY=BZ1stFY1stGZcompD1stHZY2ndGZL1stFY1stGYcompD1stGZAY
64 38 58 63 3eqtr4d φBZ1stFZ1stGZcompD1stHZAZ1stFY1stFZcompD1stHZY2ndFZL=BZ1stGY1stGZcompD1stHZY2ndGZL1stFY1stGYcompD1stHZAY
65 64 oveq1d φBZ1stFZ1stGZcompD1stHZAZ1stFY1stFZcompD1stHZY2ndFZL1stFX1stFYcompD1stHZX2ndFYK=BZ1stGY1stGZcompD1stHZY2ndGZL1stFY1stGYcompD1stHZAY1stFX1stFYcompD1stHZX2ndFYK
66 41 16 ffvelcdmd φ1stFXBaseD
67 11 12 40 33 16 24 funcf2 φX2ndFY:XHomCY1stFXHomD1stFY
68 67 25 ffvelcdmd φX2ndFYK1stFXHomD1stFY
69 39 40 13 4 43 48 55 51 57 catcocl φBZ1stFZ1stGZcompD1stHZAZ1stFZHomD1stHZ
70 39 40 13 4 66 42 43 68 50 55 69 catass φBZ1stFZ1stGZcompD1stHZAZ1stFY1stFZcompD1stHZY2ndFZL1stFX1stFYcompD1stHZX2ndFYK=BZ1stFZ1stGZcompD1stHZAZ1stFX1stFZcompD1stHZY2ndFZL1stFX1stFYcompD1stFZX2ndFYK
71 39 40 13 4 59 48 55 62 57 catcocl φBZ1stGY1stGZcompD1stHZY2ndGZL1stGYHomD1stHZ
72 39 40 13 4 66 42 59 68 60 55 71 catass φBZ1stGY1stGZcompD1stHZY2ndGZL1stFY1stGYcompD1stHZAY1stFX1stFYcompD1stHZX2ndFYK=BZ1stGY1stGZcompD1stHZY2ndGZL1stFX1stGYcompD1stHZAY1stFX1stFYcompD1stGYX2ndFYK
73 65 70 72 3eqtr3d φBZ1stFZ1stGZcompD1stHZAZ1stFX1stFZcompD1stHZY2ndFZL1stFX1stFYcompD1stFZX2ndFYK=BZ1stGY1stGZcompD1stHZY2ndGZL1stFX1stGYcompD1stHZAY1stFX1stFYcompD1stGYX2ndFYK
74 35 73 eqtrd φBZ1stFZ1stGZcompD1stHZAZ1stFX1stFZcompD1stHZX2ndFZLXYcompCZK=BZ1stGY1stGZcompD1stHZY2ndGZL1stFX1stGYcompD1stHZAY1stFX1stFYcompD1stGYX2ndFYK
75 28 30 74 3eqtrd φBFGcompQHAFX2ndEHZLXYcompCZK=BZ1stGY1stGZcompD1stHZY2ndGZL1stFX1stGYcompD1stHZAY1stFX1stFYcompD1stGYX2ndFYK
76 eqid Q×cC=Q×cC
77 2 fucbas CFuncD=BaseQ
78 2 5 fuchom N=HomQ
79 eqid compQ×cC=compQ×cC
80 76 77 11 78 12 14 16 44 24 19 23 79 15 17 20 25 21 26 xpcco2 φBLFXGYcompQ×cCHZAK=BFGcompQHALXYcompCZK
81 80 fveq2d φFX2ndEHZBLFXGYcompQ×cCHZAK=FX2ndEHZBFGcompQHALXYcompCZK
82 df-ov BFGcompQHAFX2ndEHZLXYcompCZK=FX2ndEHZBFGcompQHALXYcompCZK
83 81 82 eqtr4di φFX2ndEHZBLFXGYcompQ×cCHZAK=BFGcompQHAFX2ndEHZLXYcompCZK
84 df-ov F1stEX=1stEFX
85 1 3 4 11 14 16 evlf1 φF1stEX=1stFX
86 84 85 eqtr3id φ1stEFX=1stFX
87 df-ov G1stEY=1stEGY
88 1 3 4 11 44 24 evlf1 φG1stEY=1stGY
89 87 88 eqtr3id φ1stEGY=1stGY
90 86 89 opeq12d φ1stEFX1stEGY=1stFX1stGY
91 df-ov H1stEZ=1stEHZ
92 1 3 4 11 15 17 evlf1 φH1stEZ=1stHZ
93 91 92 eqtr3id φ1stEHZ=1stHZ
94 90 93 oveq12d φ1stEFX1stEGYcompD1stEHZ=1stFX1stGYcompD1stHZ
95 df-ov BGY2ndEHZL=GY2ndEHZBL
96 eqid GY2ndEHZ=GY2ndEHZ
97 1 3 4 11 12 13 5 44 15 24 17 96 21 26 evlf2val φBGY2ndEHZL=BZ1stGY1stGZcompD1stHZY2ndGZL
98 95 97 eqtr3id φGY2ndEHZBL=BZ1stGY1stGZcompD1stHZY2ndGZL
99 df-ov AFX2ndEGYK=FX2ndEGYAK
100 eqid FX2ndEGY=FX2ndEGY
101 1 3 4 11 12 13 5 14 44 16 24 100 20 25 evlf2val φAFX2ndEGYK=AY1stFX1stFYcompD1stGYX2ndFYK
102 99 101 eqtr3id φFX2ndEGYAK=AY1stFX1stFYcompD1stGYX2ndFYK
103 94 98 102 oveq123d φGY2ndEHZBL1stEFX1stEGYcompD1stEHZFX2ndEGYAK=BZ1stGY1stGZcompD1stHZY2ndGZL1stFX1stGYcompD1stHZAY1stFX1stFYcompD1stGYX2ndFYK
104 75 83 103 3eqtr4d φFX2ndEHZBLFXGYcompQ×cCHZAK=GY2ndEHZBL1stEFX1stEGYcompD1stEHZFX2ndEGYAK